Home » Health and Medicine (Page 2)

Category Archives: Health and Medicine

Want to Get Involved In Research?

[su_heading size="15" margin="0"]The BioInnovation Group is an undergraduate-run research organization aimed at increasing undergraduate access to research opportunities. We have many programs ranging from research project teams to skills training (BIG-RT) and Journal Club.

If you are an undergraduate interested in gaining research experience and skills training, check out our website (https://bigucd.com/) to see what programs and opportunities we have to offer. In order to stay up to date on our events and offerings, you can sign up for our newsletter. We look forward to having you join us![/su_heading]

Newest Posts

Transgender Health: Barriers to Healthcare and Physiological Differences

By Ana Nazmi Glosson, Neurobiology, Physiology & Behavior ‘21

Author’s Note: I initially wrote this literature review for UWP 104F in Winter 2020. I chose to focus on a topic that was, and is, very dear to me. I believe that readers would benefit from an overview of transgender specific health, as it is a subsection of science that is often unknown or overlooked. I wrote this while personally researching TGD healthcare and the availability of transitional therapies, and realizing firsthand the barriers to access, and lack of available information.

 

ABSTRACT

Transgender and gender diverse (TGD) individuals are people whose gender identity does not match the biological sex they were assigned at birth. Transgender is an umbrella term for many gender identities, and individuals may identify as male, female, or outside the gender binary. This population faces more barriers to healthcare access than cisgender individuals, or  people whose gender identity does match their sex assigned at birth. Lack of access to knowledgeable healthcare providers, as well as provider bias, creates an environment of hostility for a TGD patient. Transgender people have unique health needs that healthcare professionals must be educated on in order to properly serve this community. Emerging literature is beginning to identify health concerns among transgender people who have undergone hormone replacement therapy (HRT) that may require specialized treatment and attention. This review attempts to answer the following question: What does current research tell us about barriers and educational gaps in healthcare of transgender individuals, and what physiological differences in this population, compared to cisgender individuals, make this research important? Further studies are essential to properly providing healthcare to this population.  

 

Key Concepts: Transgender and gender diverse, hormone replacement therapy, culturally competent healthcare. 

 

INTRODUCTION 

Historically, TGD individuals have faced many barriers to healthcare access—and many of these barriers still exist [1-9]. This paper aims to review the specifics of these barriers and educational gaps. Current research suggests that a lack of education from physicians and provider biases against transgender people are primary reasons why transgender individuals—especially TGD youth— struggle to access safe and culturally component heathcare [3,5-7]. Transgender people are less likely to seek healthcare, and if they do seek it, they are less likely to receive proper, unbiased access with educated professionals [1,3]. This review also presents literature on unique physiological differences between transgender and cisgender individuals in order to properly express why clinical research is needed to increase baseline education [10-16]. The critical health differences between the TGD population and other groups means a team of doctors and specialists—primary care physician, gender specialist, surgeon, and endocrinologist—must collaborate to provide culturally competent care. TGD individuals may choose to medically transition and undergo gender-affirming therapies such as gender-affirming surgery (GAS) or hormone replacement therapy (HRT). Given the nature of this topic, it is important to note that much of the research in this review is from ground-breaking preliminary studies that have not yet been repeated with larger sample sizes beyond initial investigation.  

 

DISCUSSION 

Healthcare Access Among TGD Individuals

TGD individuals of all ages face challenges to healthcare on both a personal and institutional level. Increasing numbers of TGD people, including older adults, are openly living with their gender identity, meaning this is a critical area of research. TGD adults frequently struggle with insurance access; they are less likely to have insurance access compared to non-TGD LGBTQ+ individuals, and those that do have access are more likely to face healthcare discrimination [7,8]. One study found that individuals with Medicaid were more likely to be refused hormone replacement therapy, and more likely to lack a surgeon to perform gender-affirming surgery in their network, as compared to individuals with private insurance [7]. TGD adults who are part of other disadvantaged communities, such as being an ethnic minority or having lower socioeconomic status, face additional obstacles and higher levels of healthcare refusal [1,8]. Older LGBT adults are far more likely to have physical and mental health struggles than their non-LGBT counterparts, but older TDG adults are the most likely to have those struggles within the LGBT community [9,17]. Older TGD adults are more likely to live alone and have a community of “chosen family” instead of partners or children, which adds a layer of complexity to difficult end-of-life care decisions and increases senior care costs [9,17]. These circumstances show the need for thoughtful and individualized care for TDG individuals of all ages, necessitating competent and knowledgeable providers to navigate these sensitive topics. 

Adolescence is a very stressful time in people’s lives, and recent literature shows that young TGD individuals are especially vulnerable [3,5,11]. Surveying the adolescent population directly allows researchers to analyze experiences and suggestions from youth to further improve healthcare. Currently, there is not much information on transgender youth, though the field of research has begun to grow rapidly in the past few years. In everyday life, TGD individuals are often misgendered or referred to as names that they do not identify with anymore. In the context of medical care, this leads to individuals being less likely to seek continuing care. Even without malicious intent, these actions may be incredibly damaging to the TGD individual. In a medical setting, misgendering patients may foster unspoken feelings of distrust and alienation between the patient and their doctors. This is critical because transgender individuals are less likely to continue seeking routine and specialized healthcare if they feel uncomfortable in the medical environment [2,3]. In order for healthcare professionals to serve this population, practices must be as friendly as possible. Requesting and consistently using the individual’s pronouns and preferred name is a critical first step [2-3,5]. Surveyed youth suggested that healthcare providers should ask all individuals these questions, instead of only those known or assumed to be LGBTQ+ [2].  This will lead to the subpopulation not being immediately singled out in a healthcare environment, as well as creating a welcoming space for patients who may not otherwise volunteer this information. Another suggestion was healthcare providers using gender-neutral decor in exam rooms [4]. In settings such as a gynecologist office, traditionally feminime or masculine imagery and furnishings can further alienate TGD individuals and reduce the likelihood of patient continuation. The language used in medical forms should be adjusted to encompass diverse gender expressions. Given the fact that many TGD individuals identify outside of the gender binary, medical records should allow patients to write in their identity rather than check one of two boxes [3]. The gender binary is essentially the rigid classification system of two genders, male or female, a system which is commonly rejected by members of the LGBTQ+ community and their allies. Since gender identity and the language that individuals use to express their personal sense of self is incredibly varied, giving patients more freedom to define and communicate their gender identity would allow them a greater sense of expression. This may also require reform of electronic healthcare systems to include this information, which is currently not common practice. In one study, the vast majority (79%) of TGD youth indicate they would appreciate the professional record of preferred name and pronouns [5]. 

A common method of surveying the adolescent population is in-depth interviews of a small sample size. These thorough accounts of real experiences are very useful, as researchers can gain a more holistic insight into the individual’s life and experiences. The downside of this research approach is the small sample size, which may lead to results that are not as applicable to larger audiences as would be the case with a larger sample size. In order to best reach this population, researchers target LGBTQ+ programs, but for many reasons, a large subset of the TGD population cannot safely participate in those programs, and therefore are not included in reviews such as this. Voices of closeted LGBTQ+ community members in general are rarely heard, meaning this subset of the population is almost always left out. 

Research also suggests that preferences regarding the inclusion of gender identity information in medical records differ greatly if the patient is closeted or “out” [2]. There are factors that should be taken into account with medical records disclosing transgender identity. For instance, a TGD minor may privately disclose their gender identity or preferred pronouns to their healthcare provider. If this TGD youth was not “out” to their parents, and the healthcare provider made a note, their parents might find this while viewing their medical records. This could potentially be damaging or even dangerous to the patient, so healthcare providers should be careful with handling such delicate information. Additionally, TGD care—especially for patients that are in the process of transitioning—involves many aspects of healthcare; a team of culturally competent therapists, physicians, specialists, nurses, and staff must all be properly informed to contribute to a holistically supportive team. 

 

Sexual Health Needs 

Research into sexual health needs of young transgender people demonstrates TGD youth have unique sexual health needs that are not currently being met by their healthcare providers. Healthcare providers tend to be less knowledgeable about TGD-specific health issues, which differ from cisgender individuals [3,13,15]. Distinct aspects of TGD individuals include hormone replacement therapy (HRT), gender-affirming surgery (GAS), reversible puberty blockers, and same-sex STI transmission. Compared to previous generations, youth today are more likely to come out as transgender at a younger age, but many healthcare providers are not properly relaying healthcare information to their patients [3].  When providers fail to relay crucial information to their patients, it poses risk to the patients that could otherwise be avoided. For instance, a doctor who is unknowledgeable on STI transmission among two people that were assigned the same sex at birth, or even a doctor with personal prejudices against TGD patients, might not inform patients of essential sexual health information, thus putting the patients at higher risk. Sexual education information for teenagers is lacking, and this issue is amplified for TGD youth, many of whom receive absolutely no relevant information from professionals and alternatively turn to unvetted online sources. Healthcare providers need to stay up to date on the current literature for LGBTQ+ patients and have an obligation to confirm their patients receive adequate and age-appropriate information on topics of sexual health.

Transgender men or non-binary individuals who have been prescribed testosterone, a gender-affirming hormone replacement therapy, may suddenly experience an ovulatory event after a long period of time [15]. Testosterone can stop ovulation by suppressing the hypothalamic-pituitary-adrenal axis, but this research study is the first to show that after an extended period of time, such as several years, some individuals may “overcome” these suppressed hormones and suddenly ovulate [15]. This is important for healthcare professionals to be aware of because their patients may not be on contraceptives and will likely not expect this after suppressed ovulation. Unplanned pregnancy may result among patients who partake in sexual intercourse with sperm-producing individuals.  Healthcare providers have an obligation to inform their patients of medical issues such as this, as pregnancy for a transitioning TGD individual can be an extremely emotionally stressful event, especially in the face of body and gender dysphoria.  

An emerging branch of literature involves TGD patients and gynecological care. TGD patients are less likely to seek this type of care, and when they do, healthcare providers may have personal biases against treating transgender patients [4,6-7]. Transgender men or transmasculine individuals were found less likely to seek cervical cancer screenings, the main preventative test against cervical cancer. This is because of a variety of barriers on both a personal level and a wider institutional level.   On a personal level, traumatic experiences with past healthcare, misgendering, and overall gender dysphoria contribute to transgender men not seeking cervical cancer screenings [4].  Institutionally, research suggests incompetent provider education is a primary barrier to accessing satisfactory healthcare. This leads to a reduced number of transgender men or transmasculine individuals continuing cervical cancer screening [4].. Healthcare professionals should focus on ways to retain transgender men as patients throughout their transition and changing gender identity, as well as providing culturally competent healthcare to this population.

In a study on gynecological health of transmasculine people, healthcare professionals were surveyed on their willingness to provide healthcare to TGD individuals. It was found that personal biases and attitudes against TGD individuals were the greatest barriers [6]. This contradicts other studies, which indicate healthcare providers’ lack of knowledge to be the biggest obstacle to accessing safe healthcare. Professional training should account for transphobic beliefs among healthcare professionals [6].

Much of the research on TGD populations are groundbreaking pilot studies, and conducting more large scale clinical studies and research is highly recommended for improving healthcare for transgender individuals [2,5,17]. Another recommendation is to standardize inclusive and informed education on transgender topics in medical school curricula and continuing education programs [3,5,8]. Informed and supportive healthcare professionals are absolutely vital in addressing health and continued patient retention among TGD individuals. More research must be done to determine the extent of additional training needed to properly serve this population. 

 

 

HRT and Physiological Differences 

Literature has begun to explore and emphasize that physiological differences exist between transgender individuals who are undergoing gender-affirming hormone replacement therapy (HRT) and cisgender individuals [11-17]. Hormone replacement therapy is suggested to be gender-affirming to a patient with gender dysphoria by helping their body match their preferred gender identity, and has been found to be correlated with better body- and self-perception, as well as lower sexual distress [13].  This is incredibly important in increasing the holistic wellness of a transgender patient. Limited available research suggests that transitioned TGD individuals are at greater risk for certain cardiovascular diseases, such as heart attacks, compared to the general population [16]. When researching the impact of HRT on adolescents, one pilot study found key body composition differences in regards to cardiovascular health, suggesting this population has unique cardiometabolic needs that differ from both cisgender males and cisgender females [11,16]. Similarly, in regards to resting state network, individuals on HRT were found to have “intermediate” levels of physiological values unique and distinct from cisgender male or female individuals [11,16]. For the purpose of this paper, we can think of resting state networks as networks and patterns of activity between spatially separated areas in the brain, which are helpful in analysing organization, when the brain is not processing a specific task.. This information is preliminary—and it is important to keep up with developing research—but it suggests the extreme importance of larger repeat studies. Questions for further research include long-term effects of HRT on adolescents.  Additionally, research should be conducted on the distinct physiological values of individuals on HRT. In particular, do these values (the intermediate state) change the longer the individual is on HRT? If a patient were to stop HRT, would this “intermediate” state revert to values similar to their gender assigned at birth? 

Another question to consider would be whether or not this intermediate state is reversible if the patient were to stop HRT for a period of time. However, such a question would bring up many ethical concerns for the psychological well-being of the study participants, as well as physical concerns of abruptly stopping medical therapy. One longitudinal pilot study found that transgender individuals on HRT had altered resting state functional connectivity in emotional, cognition, and sensorimotor ways after undergoing gender-affirming surgery [15]. These studies suggest that the brains of TGD  individuals have the ability to form altered synaptic connections in a way that is different from cisgender people. Much more research is required in order to pinpoint any major connections and the implications of treating this population. These medical differences could be very important in areas such as proper drug dosage. Healthcare professionals must recognize these differences, and continue to push for more research to ensure transgender patients receive the competent care they need. Much of this research contributes to some sense of a gender binary, given that this “intermediate” state is defined as being between “the two” genders; furthermore, a TGD individual may not aspire to follow a binary gender, and providers should be thoughtful and individualized in the language they use with patients. The majority of these studies were composed of very few individuals. These results suggest that healthcare professionals must stay informed with research findings in order to keep their patients updated.   

 

CONCLUSION 

Transgender individuals face discrimination in everyday life, as well as in the medical world. This is a large problem because transgender patients have specific healthcare needs that differ from cisgender patients and must be approached and treated differently. Many of these studies are pilot studies and were only published in the last several years. Several recent studies have attempted to classify barriers transgender individuals face, specific health differences, and what steps healthcare providers need to be taking. As research in transgender healthcare continues, it is important to note that not all transgender people can be grouped under one umbrella. Subpopulations exist within the TGD community, each with their own healthcare concerns, physiological health differences, and types of care they seek and receive. In order to better treat these populations, healthcare professionals cannot treat every transgender person with identical care. This emerging research, especially on topics of physiological differences, should not be used to discourage TGD individuals from their necessary transitional therapies. Rather, a more comprehensive understanding should help healthcare providers give their patients stronger, evidence-backed information about their medical choices. In addition, there are barriers that this discussion barely touched on, such as cost, insurance issues, and overall accessibility. Many more studies are required to identify the best ways to combat transgender barriers to healthcare access in order to address the physiological differences between TGD and cisgender individuals. 

 

 

References:

  1. Cicero EC, Reisner SL, Merwin EI, Humphreys JC, Silva SG. 2020. The health status of transgender and gender nonbinary adults in the United States. PLoS One [Internet]. 15(2):e0228765. doi: 10.1371/journal.pone.0228765
  2. Eisenberg ME, McMorris BJ, Rider GN, Gower AL, Coleman E. 2020. “It’s kind of hard to go to the doctor’s office if you’re hated there.” A call for gender-affirming care from transgender and gender diverse adolescents in the United States. Health Soc Care Community [Internet]. 28(3):1082-1089. doi: 10.1111/hsc.12941. 
  3. Haley SG, Tordoff DM, Kantor AZ, Crouch JM, Ahrens KR. 2019. Sex Education for Transgender and Non-Binary Youth: Previous Experiences and Recommended Content. J Sex Med [Internet]. 16(11):1834-1848. doi: 10.1016/j.jsxm.2019.08.009. 
  4. Johnson M, Wakefield C, Garthe K. 2020. Qualitative socioecological factors of cervical cancer screening use among transgender men. Prev Med Rep [Internet]. 17:101052. doi: 10.1016/j.pmedr.2020.101052. 
  5. Sequeira GM, Kidd K, Coulter RWS, Miller E, Garofalo R, Ray KN. 2020. Affirming Transgender Youths’ Names and Pronouns in the Electronic Medical Record. JAMA Pediatr [Internet]. 174(5):501-503. doi: 10.1001/jamapediatrics.2019.6071.
  6. Shires DA, Prieto L, Woodford MR, Jaffee KD, Stroumsa D. 2019. Gynecologic Health Care Providers’ Willingness to Provide Routine Care and Papanicolaou Tests for Transmasculine Individuals. J Womens Health [Internet]. 28(11):1487-1492. doi: 10.1089/jwh.2018.7384. 
  7. Bakko M, Kattari SK. 2020. Transgender-Related Insurance Denials as Barriers to Transgender Healthcare: Differences in Experience by Insurance Type. J Gen Intern Med [Internet]. 35(6):1693-1700. doi: 10.1007/s11606-020-05724-2.
  8. White Hughto JM, Murchison GR, Clark K, Pachankis JE, Reisner SL. 2016. Geographic and Individual Differences in Healthcare Access for U.S. Transgender Adults: A Multilevel Analysis. LGBT Health [Internet]. 3(6):424-433. doi: 10.1089/lgbt.2016.0044.
  9. Stinchcombe A, Smallbone J, Wilson K, Kortes-Miller K. 2017. Healthcare and End-of-Life Needs of Lesbian, Gay, Bisexual, and Transgender (LGBT) Older Adults: A Scoping Review. Geriatrics. [Internet]. 2(1):13. https://doi.org/10.3390/geriatrics2010013
  10. Clemens B, Junger J, Pauly K, Neulen J, Neuschaefer-Rube C, Frölich D, Mingoia G, Derntl B, Habel U. 2017. Male-to-female gender dysphoria: Gender-specific differences in resting-state networks. Brain Behav [Internet]. 7(5):e00691. doi: 10.1002/brb3.691. 
  11. Nokoff NJ, Scarbro SL, Moreau KL, Zeitler P, Nadeau KJ, Juarez-Colunga E, Kelsey MM.  2020. Body composition and markers of cardiometabolic health in transgender youth compared to cisgender youth. J Clin Endocrinol Metab [Internet]. 105(3):704–714. doi: 10.1210/clinem/dgz029. 
  12. Oda H, Kinoshita T. 2017. Efficacy of hormonal and mental treatments with MMPI in FtM individuals: cross-sectional and longitudinal studies. BMC Psychiatry [Internet]. 17(1):256. doi: 10.1186/s12888-017-1423-y. 
  13. Ristori J, Cocchetti C, Castellini G, Pierdominici M, Cipriani A, Testi D, Gavazzi G, Mazzoli F, Mosconi M, Meriggiola MC, Cassioli E, Vignozzi L, Ricca V, Maggi M, Fisher AD. 2020. Hormonal Treatment Effect on Sexual Distress in Transgender Persons: 2-Year Follow-Up Data. J Sex Med [Internet]. 17(1):142-151. doi: 10.1016/j.jsxm.2019.10.008. 
  14. Schneider MA, Spritzer PM, Minuzzi L, Frey BN, Syan SK, Fighera TM, Schwarz K, Costa ÂB, da Silva DC, Garcia CCG, Fontanari AMV, Real AG, Anes M, Castan JU, Cunegatto FR, Lobato MIR. 2019. Effects of Estradiol Therapy on Resting-State Functional Connectivity of Transgender Women After Gender-Affirming Related Gonadectomy. Front Neurosci [Internet]. 13:817. doi: 10.3389/fnins.2019.00817.
  15. Taub RL, Adriane Ellis S, Neal-Perry G, Magaret AS, Prager SW, Micks EA. 2020. The effect of testosterone on ovulatory function in transmasculine individuals. Am J Obstet Gynecol [Internet]. 223(2):229. doi: 10.1016/j.ajog.2020.01.059. 
  16. Alzahrani T, Nguyen T, Ryan A, Dwairy A, McCaffrey J, Yunus R, Forgione J, Krepp J, Nagy C, Mazhari R, Reiner J. 2019. Cardiovascular Disease Risk Factors and Myocardial Infarction in the Transgender Population. Circ Cardiovasc Qual Outcomes [Internet]. 12(4):e005597. doi: 10.1161/CIRCOUTCOMES.119.005597. 
  17. Fredriksen-Goldsen KI, Cook-Daniels L, Kim HJ, Erosheva EA, Emlet CA, Hoy-Ellis CP, Golden J, Muraco A. 2014. Physical and Mental Health of Transgender Older Adults: An At-Risk and Underserved Population. The Gerontologist [Internet]. 53 (3): 488-500. doi: 10.1093/geront/gnt021.

Reproductive and Developmental Health Effects of PFAS on Animal Models: A Review of Current Literature

By Anna Maddison, Environmental Toxicology ‘21, Janaé Bonnell, Environmental Toxicology ‘22, Dr. Michele La Merrill

Authors’ Note: This literature review was conducted for the Office of Environmental Health Hazard Assessment in the California Environmental Protection Agency under a contract issued to Dr. Michele La Merrill. We wanted to understand the current research on the reproductive and developmental toxicity of PFHxS, PFBS, PFHxA, PFHpA, PFNA, PFDA, and ADONA to draw conclusions and make recommendations for future policy and research. It is important to understand the health effects of substances such as PFAS chemicals that are present in our food, water, and consumer products to develop regulatory standards that protect public health.

 

Abstract

Per- and polyfluoroalkyl (PFAS) chemicals are used in the production of many industrial processes and consumer goods, and they have been widely detected in humans and animals. PFOS and PFOA have been comprehensively studied and are being phased out of use, but there are other understudied PFAS chemicals with effects that should be considered in regulatory affairs regarding public health and safety. In this study, we focus on the reproductive and developmental effects of seven PFAS chemicals: perfluorononanoic acid (PFNA), perfluorohexanoic acid (PFHxA), perfluorohexane sulfonic acid (PFHxS), 4,8-dioxia-3H-perfluorononanoic acid (ADONA), perfluorobutane sulfonic acid (PFBS), perfluoroheptanoic acid (PFHpA), perfluorodecanoic acid (PFDA). This literature review presents the observed reproductive and developmental effects of these chemicals on animal models, which can be used to help establish legislative priorities and draw attention to current gaps in published literature.

Keywords: PFAS, review, animal model, PFBS, PFHxS, PFHpA, PFHxA, PFDA, PFNA, ADONA

 

Introduction

Poly- and perfluoroalkyl (PFAS) chemicals are widespread synthetic chemicals that are highly mobile, persistent in the environment, and are known to bioaccumulate in humans and animals[1,2]. PFAS chemicals have extensive use due to their unique anti-wetting abilities, as well as their ability to act as a surfactant, a molecule that lowers the surface tension between two liquids[3]. These properties have led to their use in oil- and water-repellent textiles, coatings, and fire-retardant products. PFAS chemicals can also be found in drinking water, production facilities and industries, and many commercial household products[1,4]. Humans are mainly exposed to PFAS through their diet but are unable to metabolize these chemicals in their bodies[5,6]

These chemicals have found use in multiple industries for over 60 years[7]. PFAS production peaked in the 1990s, with PFOS and PFOA being the most popularly used PFAS chemicals. However, after studies linked these chemicals to adverse human health effects, including damage to the immune system and liver, reproductive and developmental harm, hormone disruption, and cancer, the United States had voluntarily phased out their use[1,5,2]. The industry has since shifted to favor PFASs with shorter chains, as these were believed to be less harmful to human health[7,8]. Although no association between chain length and toxicity has been proven, it is still being explored. 

To this end, perfluorohexane sulfonic acid (PFHxS), perfluorobutane sulfonic acid (PFBS), perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and 4,8-dioxia-3H- perfluorononanoic acid (ADONA) have been increasingly used for industrial purposes as alternatives to PFOS and PFOA[6,8]. These PFAS chemicals have shorter carbon backbone chains, so it is believed they may have less negative health effects than PFOA and PFOS, but this has not been proven. However, their health effects are not as well-explored as those of PFOS and PFOA, thus necessitating new research into the long-term health impacts of exposure to these replacement PFAS chemicals.

Multiple epidemiological studies in humans have suggested that there is an association between PFAS exposure and adverse reproductive and developmental health impacts. After exposure during pregnancy, lower levels of thyroid hormones T3 and thyroxine have been observed in both pregnant women and fetuses, as well as adverse birth outcomes and behavioral effects on children exposed in-utero[6,9]. Some of these PFAS chemicals, such as PFNA, are being detected in both seminal plasma and breast milk of humans[10].

Individuals who are not fully developed may be more vulnerable to PFAS exposure and therefore, more at risk for any toxic effects. The purpose of this literature review is to survey reproductive and developmental effects of PFAS exposure to inform on potential literary gaps and future regulatory priorities. 

 

Methods

Search Procedure

The research for this literature review was conducted by systematically choosing articles discovered through the search engine PubMed. The initial database of articles was created from searching the abbreviated forms of the chemical names (PFHxS, PFBS, PFHxA, PFHpA, PFNA, PFDA, ADONA) in PubMed using the filter “Other Animals” (Table 1). Only papers in English were considered for inclusion. An exception was made for ADONA due to our search yielding an excess of papers written by an author by that name. Instead the search term “ADONA NOT adona [author]” was used. Even with the reduced search, many of the results did not include the PFAS chemical ADONA, and subsequently, were not included. 

 

Table 1: Contains a list of searches and number of results yielded for each one.

Search Date Search Term(s) Number of Results
April 15th, 2020 PFHxS 124
April 25th, 2020 PFBS 78
April 25th, 2020 PFHxA 54
April 25th, 2020 PFHpA 29
April 25th, 2020 PFNA 189
April 25th, 2020 PFDA 198
April 26th, 2020 PFHxS 125
May 12th, 2020 PFHpA 30
May 13th, 2020 PFDA 199
May 15th, 2020 “ADONA NOT adona [author]” 14
May 29th, 2020 PFDA 200

 

Study Selection

The titles and abstracts of each article were scanned for relevance to reproductive toxicity. This includes in vitro studies on isolated cells, different toxicological effects based on sex, responses affecting reproductive organs, and developmental effects in offspring. To limit the scope, this excluded human studies, bioconcentration studies that did not specify reproductive organs or unique developmental patterns, wildlife studies, and studies focused on other organ systems not in the context of reproduction or development. Additionally, we chose to exclude studies which used a mixture of chemicals or in which the PFAS chemical was analyzed as a metabolite of a parent chemical. This was due to the fact that it is uncertain which chemical actually caused an effect. Relevant articles were examined in depth to determine significant toxicological effects of the PFAS chemicals. The number of relevant articles in comparison to the total articles which arose from our search can be seen in Table 2. Other notable responses, from papers which included reproductive effects, were denoted in our accompanying spreadsheet. Due to time constraints, the results for PFDA were summarized with less depth and were instead included as an appendix. 

 

Table 2: Contains the number of resulting studies chosen for inclusion in this review.

Chemical Articles Used in Our Research
Perfluorononanoic Acid PFNA 17
Perfluorohexanoic Acid PFHxA 5
Perfluorohexane Sulfonic Acid PFHxS 11
4,8-3H-Perfluorononanoic Acid ADONA 1
Perfluorobutane Sulfonic Acid PFBS 15
Perfluoroheptanoic Acid PFHpA 2
Perfluorodecanoic Acid PFDA 16

 

Results

PFNA

Seventeen studies contained relevant reproductive and/or developmental effects of PFNA exposure. All of these studies except for one, which dosed Xenopus laevis (African clawed toad, African claw-toed frog or the platanna), examined the effects of PFNA exposure on Danio rerio (zebrafish), Rattus (rats), or Mus (mice). These studies are compiled in Supplementary Table 1 (ST1).

PFNA exposure in Danio rerio caused embryo disfigurement and altered motion patterns, as well as other reproductive and developmental effects. In recently fertilized eggs, PFNA exposure resulted in an increase in malformation rate[6], specifically, in the rate of ventricular edema[19]. Studies also showed correlation between PFNA exposure and locomotion: Danio rerio exposed as embryos travelled less distance [11][13][6], their activity level increased[24] [13], they bumped into the mirror more[13], their startle response and burst activity increased[6],  the amount of time they spent in the middle of the water, and their velocity changed[13][11]. Additionally, exposure to PFNA caused reproductive effects such as an increase in the number of opaque embryos[19][, a decrease in hatching rate[19][15], a decrease in the number of eggs in females[15], and an increase in yolk sac area[11]. Observed developmental effects included a decrease in body length[13], abnormally enlarged follicles in the thyroid, and increased T3 hormone levels[18]

In Mus and Rattus, the most observed reproductive effects occurred in the testis. In Rattus, cell viability in Sertoli[12] and testicular[23] cells decreased, DNA damage in testicular cells increased[23], vacuoles formed in the Sertoli cells[12], the number of germ cells that degenerated or were TUNEL-positive increased[12][20], and the percentage of apoptotic cells in the testis increased[20]. In Mus, intratesticular and serum levels of testosterone, testicular glucose level, and testicular lactate concentration decreased[14][10]. Also in Mus, seminiferous tubules had intraepithelial vacuolation where small cavities formed in the tubules, marginal condensation of chromatin in round spermatids, and giant cells and exfoliation of germ cells in the lumen of the tubules[14]. Reproductive effects in mammals exposed to PFNA included reduced prenatal and postnatal survival[16], maternal weight decreased[16][25], and lower birth weight and higher blood pressure in pups[25]. Additionally, there was a sex-specific difference in that serum concentration of PFNA decreased more rapidly in adult females than males[17]. Finally, the developmental effects of PFNA exposure in Mus who had not experienced puberty included a decrease in weight, an increase in absolute and relative liver weight, and hepatocellular hypertrophy[14][10].

In Xenopus laevis, PFNA exposure resulted in increased embryo mortality and malformations including stunted tadpole length, multiple edemas, gut miscoiling, microcephaly in which the offspring had abnormally small heads, and skeletal kinking[22].

PFHxA

Five articles on reproductive and/or developmental effects of PFHxA, which showed statistically significant responses, were found to be relevant to our study. These studies are compiled in Supplementary Table 2 (ST2).  Each of the five papers studied a different animal: Danio rerio, Daphnia magna, anuran Xenopus laevis, Mus, and Brachionus calyciflorus. In both Danio rerio and anuran Xenopus laevis embryos, a decrease in body length was observed in the animals exposed to PFHxA[26][28]. In Daphnia magna, reproductive output increased with chronic exposure to PFHxA and mobility decreased with acute exposure to PFHxA[27]. In the Mus, indirect exposure in utero to PFHxA resulted in pups taking longer to open their eyes, a decrease in their body weight, and a lower ratio of liver to body weight[29]. Xenopus also saw liver effects in the form of swollen livers in tadpoles[28. In Brachionus calyciflorus, the rate of population increase decreased, and the mictic ratio, the ratio between eggs that require fertilization and those that do not, and egg size increased[30].

PFHxS

Using the methods described above, fifteen articles examining the effects of PFHxS on Mus, Rattus, Gallus gallus domesticus, and Danio rerio were within the scope of our literature review. These studies are compiled in Supplementary Table 3 (ST3). In the mammals, notable, visible reproductive and developmental effects were observed. In general, male mammals dosed with PFHxS seemed to present more deviations from the control opposed to females. For example, when PFHxS was orally administered or injected via IV, male Rattus took a significantly longer time to expel it from their plasma than female Rattus[38]. Other instances of this trend were apparent when male pups displayed increased anogenital distance[35] and decreased weight gain[36] at more concentrations than females. Other effects of PFHxS in mammals included decreased activity[32] and increased liver and thyroid weight[35] in pups who were respectively dosed neonatally and exposed indirectly in utero as well as directly for two weeks. In Gallus gallus domesticus, PFHxS egg injections decreased pipping success, which is the chick’s ability to break themselves out from their shell, and decreased the mass of embryos[37]. Finally, in Danio rerio embryos an EC50 value was calculated to be 84.5μM using the concentration at which they died or suffered from an adverse effect, defined to be non-inflated swim bladder, pericardial or yolk sac edemas, or scoliosis, as a reference[34]. Altered motion patterns and body lengths were also observed[6][26]. 

ADONA

Only one article was found that showed reproductive effects of ADONA. This study is shown in Supplementary Table 4 (ST4). Pregnant Rattus norvegicus were exposed to ADONA via oral administration which resulted in a decrease in pup weight, maternal food consumption while pregnant, maternal weight gain, and the number of pups that survived[40]. A higher dosage was abandoned after two days due to death, significant body weight loss, reduced food consumption, decreased activity, dehydration, coldness to touch, pale extremities, rales or rattling sounds in the lungs, ungroomed coat, urine-stained fur, and ptosis or drooping eyelids in the pregnant Rattus[40].

PFBS

Seventy-nine articles resulted from a PubMed search on perfluorobutane sulfonic acid (PFBS) using the above-described methods. Of those seventy-nine articles, fifteen were deemed to be within the scope of this review. These studies are compiled in Supplementary Table 5 (ST5). These studies investigated the effects of PFBS on Mus musculus (mice), Oryzias melastigma (marine medaka), Caenorhabditis elegans, Danio rerio, Rattus norvegicus (rats), Xenopus laevis, and C. riparius (harlequin flies). A multitude of adverse reproductive effects was observed as a result of PFBS exposure. Multiple studies demonstrated that PFBS affects hormone levels in both ICR Mus and Oryzias, generally including a decrease in estrogen levels in all animals and a testosterone decrease in males[7][43]. One study noted that males were experiencing estrogenic changes and females were experiencing antiestrogenic changes as a result of PFBS exposure[43]. PFBS exposure also leads to alterations in levels of follicle-stimulating hormone and progesterone[7][43]. In several egg-producing organisms studied, it was found that overall egg production was significantly decreased[42][43] and that this effect could also occur after several generations of exposure to PFBS[48]. In both Mus and Oryzias, significant decreases in uterus and ovary size were recorded in both exposed organisms[43][9]. These species also had significant changes in the number of follicles and oocytes in various stages after exposure[7][43][9]. Lastly, organisms were observed to have decreased length after exposure to PFBS, an effect that was usually more prominent in males[3][48][49]

First-generation offspring from exposed parents were observed to have changes in hormone levels that would affect growth and development, generally including increases in luteinizing hormone[43][9] and significant alterations in T3 concentration[3][9]. Reduced estrogen levels and elevation of thyroid-stimulating hormone were also observed[9]. The length of diestrus in Mus and Rattus was also significantly increased after parental exposure to PFBS[9][8]. Significant decreases in uterus and ovary size were recorded in the offspring of exposed Mus and Oryzias[43][9]. Mus offspring were also observed to have significant changes in the number of follicles and oocytes in various stages[9]. Furthermore, organismal body weight was observed to be influenced by parental PFBS exposure, although it both increased and decreased in separate experiments[3][8][48]. A study exploring the influence of maternal and paternal dosage on Oryzias offspring observed greater negative impacts on offspring related to paternal exposure to PFBS rather than maternal exposure, such as swimming hyperactivity[44]. Offspring of exposed parents also experienced deformities, such as increased tail and craniofacial malformations in Danio rerio[49]. Lastly, it was observed that PFBS exposure delayed both the age of vaginal opening[9] and preputial separation in Mus and Rattus with parents exposed to PFBS[8].

Of the fifteen studies included, only two focused on the multigenerational effects of PFBS on organismal reproduction and development. PFBS was observed to affect T4 hormone concentration in F2 generation Oryzias after a life-cycle exposure during the F0 generation[3]. In the same species, both the weight of F2 generation eggs, as well as their lipid and protein content, were significantly increased after ancestral exposure during the F0 generation development[43]

PFHpA

A search of PubMed using the above methods yielded thirty results for the chemical PFHpA. Of these thirty results, two were found to be within the scope of this review. These studies are compiled in Supplementary Table 6 (ST6). These reports studied the effects of multiple chemicals, including PFHpA, on Danio rerio and Xenopus laevis via exposure in solution.  Both studies are described here due to the limited number of papers. The lowest-observed-adverse-effect levels in the Menger[6] and Kim[28] studies were found to be 89 µM and <0.25 mM (250 μM) renewed daily, respectively. The findings in these studies suggest that PFHpA is both a possible teratogen negatively affecting the embryo or fetus and a developmental toxicant in multiple animal species[28]. A dose-response relationship was exhibited regarding PFHpA dosage and rates of both malformations and mortality in Xenopus embryos[28]. Observed malformations included reduction of body length in 24% of Xenopus tadpoles dosed with 1,000 µM of PFHpA as embryos, as well as enlarged, abnormal livers[28]. However, the observation of reduced tadpole body length was only noted at a dosage of 1,000 µM of PFHpA, which is comparable to the LC50 value in this study, found to be 942.4 µM[28]. There was also evidence of potential behavioral effects in developing organisms. For example, Danio rerio exposed to PFHpA had a significant decrease in swimming distance recorded at the highest dosage[6]. No studies listed in PFHpA searches investigated the reproductive hazard of the chemical.

PFDA

Of the two hundred articles listed for PFDA on PubMed using the above search methods, sixteen studies were considered relevant to be included within this report. These sixteen studies are summarized in Appendix 1 (A1) and a subset of them is highlighted here. Both the viability and maturation of pig oocytes was shown to be negatively impacted by exposure to PFDA[50]. The thyroid was shown to be affected in multiple studies, with thyroid hormone levels being both decreased[59][61][62]  and increased[57] in different reports. PFDA also adversely affected the sexual organs of exposed organisms, including the seminal vesicle[56] and seminiferous tubules[60]. In rats, hamsters, and guinea pigs, degeneration of the seminiferous tubules was observed following PFDA exposure[60].

Outside of the 184 remaining studies not included in Appendix 1, three studies stated that PFDA may be estrogen-like in its action. However, these three papers did not contain health endpoints that were within the scope of this report, such as gene expression and carcinogenesis[64][65][66]. These papers are referenced within the sources of this report but were not included within the review of reproductive and developmental health, nor were they included within Appendix 1 (A1). 

 

Discussion

While the toxicity of PFBS, PFHxS, PFHpA, PFHxA, PFDA, PFNA, and ADONA, which are used as substitutes for PFOS and PFOA, is still being investigated, the current body of scientific research suggests that exposure to these PFAS chemicals poses potential reproductive and developmental risk to an organism.

In several species, PFNA exposure resulted in several effects that could interfere with normal procreation and aging systems. Observed deviations from control groups included embryo malformation, offspring mortality, altered behavioral patterns, morphological abnormalities, weight changes, and different hormone levels. There was evidence to suggest that males retain more PFNA than their female counterparts, and several studies suggested that male sex organs were impacted by PFNA exposure. Relative to the other PFAS chemicals studied in this paper, PFNA had a high amount of significant papers with reproductive and developmental effects. This may suggest that it poses a higher risk than some of the other chemicals, but it should be considered in the context that PFNA also had a higher number of search results than the other chemicals and therefore, may just be more well studied. A limitation in these findings that should be considered is the apparent lack of corresponding research on female sexual organs. Also, several effects were not observed to have a dose-dependent response, while others were only seen at lower concentrations. 

PFHxA only had five relevant studies and each used a different species as test subjects. Additionally, there were four studies, two used in the results of PFHxA and two not used due to a lack of significant results, which also did their experiments with other PFAS chemicals, and in comparison, individuals dosed with PFHxA had milder, if any, effects. This suggests that PFHxA may have lower reproductive and developmental toxicity than other PFAS chemicals in this paper. This could be taken into consideration when assessing the risk of exposure associated with this chemical. 

PFHxS, similar to PFNA, had more toxic effects in males than females. Unlike the studies using PFNA, a majority of these did test both males and females in the same conditions. Exposed males retained a higher serum concentration of PFHxS for longer and displayed changes in anogenital distance and weight at a larger range of dosage concentrations than females.

There was one relevant paper that addressed the reproductive and developmental effects of ADONA exposure. This, coupled with the potential conflict of interest presented by the funding,  makes it impossible to draw any conclusions regarding the toxicity of this chemical. Even so, effects were observed from exposure to ADONA. These included changes in weight, mortality rate, and food consumption. To further understand the reproductive and developmental toxicity of ADONA, further research is necessary. 

Multiple species demonstrated adverse reproductive and developmental health outcomes after exposure to PFBS. Alterations to hormone levels and morphological abnormalities were observed following PFBS dosage. Also, PFBS was seen to potentially influence hormonal sex changes in exposed fish. Several studies emphasized the impacts PFBS exposure may have on offspring. The above changes were seen in offspring after parental exposure, as well as alterations to egg development and the size of female reproductive organs. It was also noted that paternal exposure to PFBS tends to more negatively impact the health of offspring than maternal exposure does. Compared to other chemicals included  within this report, PFBS had a relatively high number of studies that met the requirements for inclusion. 

Only two relevant studies were found regarding PFHpA, each using a different test species. These studies investigated the developmental effects of PFHpA on organisms exposed as embryos or tadpoles. Findings suggested that PFHpA may be teratogenic and toxic to developing organisms based on resulting morphological abnormalities and behavioral alterations in exposed organisms. However, no studies were found to investigate the reproductive impacts of PFHpA exposure, leading to a gap in the available research on this chemical.

The studies included on PFDA cover its effect on cell viability, hormone levels, and sex organs, as well the potential developmental toxicity and teratogenicity of PFDA exposure. However, within these studies, there are limitations. Multiple studies did not include information on the age at which organisms, usually Rattus, were dosed, making it more difficult to fully comprehend the effects of PFDA on stages of animal growth. Compared to several of the chemicals included in this paper, PFDA has a relatively higher number of papers that met the criteria for inclusion. Studies have been conducted on this chemical since the 1980s, far preceding work on some of the other chemicals in this report. Furthermore, while the effects of PFDA on hormones and the thyroid have been investigated in several studies, little work appears to have been done on the multigenerational and offspring effects of PFDA. Lastly, five of the sixteen studies investigated the effects of PFDA only on males, leaving further information on female-specific effects to be desired. Both multigenerational and female-specific studies could be considered potential avenues for further research.

Overall, these PFAS chemicals have demonstrated that they may have potential for reproductive and developmental health effects, and their effects on humans should be investigated to ascertain human risk. 

 

Conclusion

The objective of the present study was to compile and summarize the toxic effects of different PFAS chemicals on the reproduction and development of animals in controlled settings. While there are variations in the species used, as well as the method in which they were exposed and the concentration tested, exposure to all seven PFAS chemicals impacted aspects of development, and six had effects on reproduction. These effects should be considered in designing additional research on the outcomes of PFAS exposure and in assessing the risk of these chemicals on living organisms.

 

Acknowledgements

This work was conducted under California Environmental Protection Agency, Office of Environmental Health Hazard Assessment contract 17-E0024. The authors appreciate the support of Dr. David Furlow, professor of Neurobiology, Physiology, and Behavior and University Honors Program Director at University of California, Davis, and Dr. Sarah Elmore at the Office of Environmental Health Hazard Assessment. 

 

Abbreviations

DPF days post-fertilization
E2 estrogen/estradiol
FSH follicle stimulating hormone
GD gestation day
GnRH Gonadotropin-releasing hormone
HPF hours post-fertilization
KT-11 11-keto-testosterone
LH luteinizing hormone
P4 progesterone
PFAA perfluoroalkyl acids
PND postnatal day
PPD postpartum day
T testosterone
T3 3,3’,5-triiodothyronine
T4 thyroxine
TBG thyroxine-binding globulin
TSH thyroid-stimulating hormone

 

References

  1. US EPA, O. (2016, March 30). Basic information on pfas [Overviews and Factsheets]. US EPA. https://www.epa.gov/pfas/basic-information-pfas
  2. Pelch, K. E., Reade, A., Wolffe, T. A. M., & Kwiatkowski, C. F. (2019). PFAS health effects database: Protocol for a systematic evidence map. Environment International, 130, 104851. https://doi.org/10.1016/j.envint.2019.05.045
  3. Chen, L., Hu, C., Tsui, M. M. P., Wan, T., Peterson, D. R., Shi, Q., Lam, P. K. S., Au, D. W. T., Lam, J. C. W., & Zhou, B. (2018). Multigenerational Disruption of the Thyroid Endocrine System in Marine Medaka after a Life-Cycle Exposure to Perfluorobutanesulfonate. Environmental Science and Technology, 52(7), 4432–4439. https://doi.org/10.1021/acs.est.8b00700
  4. Lau, C. (2015). Perfluorinated compounds: An overview. In J. C. DeWitt (Ed.), Toxicological Effects of Perfluoroalkyl and Polyfluoroalkyl Substances (pp. 1–21). Springer International Publishing. https://doi.org/10.1007/978-3-319-15518-0_1
  5. Kingsley, S. L., Eliot, M. N., Kelsey, K. T., Calafat, A. M., Ehrlich, S., Lanphear, B. P., Chen, A., & Braun, J. M. (2018). Variability and predictors of serum perfluoroalkyl substance concentrations during pregnancy and early childhood. Environmental Research, 165, 247–257. https://doi.org/10.1016/j.envres.2018.04.033
  6. Menger, F., Pohl, J., Ahrens, L., Carlsson, G., & Örn, S. (2020). Behavioural effects and bioconcentration of per- and polyfluoroalkyl substances (PFASs) in zebrafish (Danio rerio) embryos. Chemosphere, 245, 125573. https://doi.org/10.1016/j.chemosphere.2019.125573
  7. Cao, X. Yuan, Liu, J., Zhang, Y. Jie, Wang, Y., Xiong, J. Wei, Wu, J., & Chen, L. (2020). Exposure of adult mice to perfluorobutanesulfonate impacts ovarian functions through hypothyroxinemia leading to down-regulation of Akt-mTOR signaling. Chemosphere, 244, 125497. https://doi.org/10.1016/j.chemosphere.2019.125497
  8. Lieder, P. H., York, R. G., Hakes, D. C., Chang, S. C., & Butenhoff, J. L. (2009). A two-generation oral gavage reproduction study with potassium perfluorobutanesulfonate (K+PFBS) in Sprague Dawley rats. Toxicology, 259(1–2), 33–45. https://doi.org/10.1016/j.tox.2009.01.027
  9. Feng, X., Cao, X., Zhao, S., Wang, X., Hua, X., Chen, L., & Chen, L. (2017). Exposure of pregnant mice to perfluorobutanesulfonate causes hypothyroxinemia and developmental abnormalities in female offspring. Toxicological Sciences, 155(2), 409–419. https://doi.org/10.1093/toxsci/kfw219
  10. Singh, S., & Singh, S. K. (2019b). Acute exposure to perfluorononanoic acid in prepubertal mice: Effect on germ cell dynamics and an insight into the possible mechanisms of its inhibitory action on testicular functions. Ecotoxicology and Environmental Safety, 183, 109499. https://doi.org/10.1016/j.ecoenv.2019.109499
  11. Jantzen, C. E., Annunziato, K. A., Bugel, S. M., & Cooper, K. R. (2016). PFOS, PFNA, and PFOA sub- lethal exposure to embryonic zebrafish have different toxicity profiles in terms of morphometrics, behavior and gene expression. Aquatic Toxicology, 175, 160–170. https://doi.org/10.1016/j.aquatox.2016.03.026
  12. Feng, Y., Fang, X., Shi, Z., Xu, M., & Dai, J. (2010). Effects of PFNA exposure on expression of junction-associated molecules and secretory function in rat Sertoli cells. Reproductive Toxicology, 30(3), 429–437. https://doi.org/10.1016/j.reprotox.2010.05.010
  13. Jantzen, C. E., Annunziato, K. M., & Cooper, K. R. (2016). Behavioral, morphometric, and gene expression effects in adult zebrafish (Danio rerio) embryonically exposed to PFOA, PFOS, and PFNA. Aquatic Toxicology, 180, 123–130. https://doi.org/10.1016/j.aquatox.2016.09.011
  14. Singh, S., & Singh, S. K. (2019a). Prepubertal exposure to perfluorononanoic acid interferes with spermatogenesis and steroidogenesis in male mice. Ecotoxicology and Environmental Safety, 170, 590–599. https://doi.org/10.1016/j.ecoenv.2018.12.034
  15. Zhang, Sheng, Wang, Zhang, Dai. “Zebrafish Reproductive Toxicity Induced by Chronic Perfluorononanoate Exposure.” Aquatic Toxicology, June 2016, www.sciencedirect.com/science/article/pii/S0166445X16300959?via=ihub
  16. Das, K. P., Grey, B. E., Rosen, M. B., Wood, C. R., Tatum-Gibbs, K. R., Zehr, R. D., Strynar, M. J., Lindstrom, A. B., & Lau, C. (2015). Developmental toxicity of perfluorononanoic acid in mice. Reproductive Toxicology, 51, 133–144. https://doi.org/10.1016/j.reprotox.2014.12.012
  17. Tatum-Gibbs, K., Wambaugh, J. F., Das, K. P., Zehr, R. D., Strynar, M. J., Lindstrom, A. B., Delinsky, A., & Lau, C. (2011). Comparative pharmacokinetics of perfluorononanoic acid in rat and mouse. Toxicology, 281(1), 48–55. https://doi.org/10.1016/j.tox.2011.01.003
  18. Liu, Y., Wang, J., Fang, X., Zhang, H., & Dai, J. (2011). The thyroid-disrupting effects of long-term perfluorononanoate exposure on zebrafish (Danio rerio). Ecotoxicology, 20(1), 47–55. https://doi.org/10.1007/s10646-010-0555-3
  19. Liu, H., Sheng, N., Zhang, W., & Dai, J. (2015). Toxic effects of perfluorononanoic acid on the development of Zebrafish (Danio rerio) embryos. Journal of Environmental Sciences, 32, 26–34. https://doi.org/10.1016/j.jes.2014.11.008
  20. Feng, Y., Shi, Z., Fang, X., Xu, M., & Dai, J. (2009). Perfluorononanoic acid induces apoptosis involving the Fas death receptor signaling pathway in rat testis. Toxicology Letters, 190(2), 224–230. https://doi.org/10.1016/j.toxlet.2009.07.020
  21. Zheng, X.-M., Liu, H.-L., Shi, W., Wei, S., Giesy, J. P., & Yu, H.-X. (2012). Effects of perfluorinated compounds on development of zebrafish embryos. Environmental Science and Pollution Research, 19(7), 2498–2505. https://doi.org/10.1007/s11356-012-0977-y
  22. Kim, M., Son, J., Park, M. S., Ji, Y., Chae, S., Jun, C., Bae, J.-S., Kwon, T. K., Choo, Y.-S., Yoon, H., Yoon, D., Ryoo, J., Kim, S.-H., Park, M.-J., & Lee, H.-S. (2013). In vivo evaluation and comparison of developmental toxicity and teratogenicity of perfluoroalkyl compounds using Xenopus embryos. Chemosphere, 93(6), 1153–1160. https://doi.org/10.1016/j.chemosphere.2013.06.053
  23. Lindeman, B., Maass, C., Duale, N., Gützkow, K. B., Brunborg, G., & Andreassen, Å. (2012). Effects of per- and polyfluorinated compounds on adult rat testicular cells following in vitro exposure. Reproductive Toxicology, 33(4), 531–537. https://doi.org/10.1016/j.reprotox.2011.04.001
  24. Ulhaq, M., Örn, S., Carlsson, G., Morrison, D. A., & Norrgren, L. (2013). Locomotor behavior in zebrafish (Danio rerio) larvae exposed to perfluoroalkyl acids. Aquatic Toxicology, 144–145, 332–340. https://doi.org/10.1016/j.aquatox.2013.10.021
  25. Rogers et al. “Elevated Blood Pressure in Offspring of Rats Exposed to Diverse Chemicals During Pregnancy.” Toxicological Sciences, Society of Toxicology, Nov. 2013, academic.oup.com/toxsci/article/137/2/436/1675113
  26. Annunziato, K. M., Jantzen, C. E., Gronske, M. C., & Cooper, K. R. (2019). Subtle morphometric, behavioral and gene expression effects in larval zebrafish exposed to pfhxa, pfhxs and 6:2 ftoh. Aquatic Toxicology (Amsterdam, Netherlands), 208, 126–137. https://doi.org/10.1016/j.aquatox.2019.01.009
  27. Barmentlo, S. H., Stel, J. M., van Doorn, M., Eschauzier, C., de Voogt, P., & Kraak, M. H. S. (2015). Acute and chronic toxicity of short chained perfluoroalkyl substances to Daphnia magna. Environmental Pollution, 198, 47–53. https://doi.org/10.1016/j.envpol.2014.12.025.
  28. Kim, M., Park, M. S., Son, J., Park, I., Lee, H.-K., Kim, C., Min, B.-H., Ryoo, J., Choi, K. S., Lee, D.-S., & Lee, H.-S. (2015). Perfluoroheptanoic acid affects amphibian embryogenesis by inducing the phosphorylation of ERK and JNK. International Journal of Molecular Medicine, 36(6), 1693–1700. https://doi.org/10.3892/ijmm.2015.2370
  29. Iwai, H., & Hoberman, A. M. (2014). Oral (Gavage) combined developmental and perinatal/postnatal reproduction toxicity study of ammonium salt of perfluorinated hexanoic acid in mice. International Journal of Toxicology, 33(3), 219–237. https://doi.org/10.1177/1091581814529449
  30. Iwai, H., Hoberman, A. M., Goodrum, P. E., Mendelsohn, E., & Anderson, J. K. (2019). Addendum to Iwai and Hoberman (2014)—Reassessment of developmental toxicity of pfhxa in mice. International Journal of Toxicology, 38(3), 183–191. https://doi.org/10.1177/1091581819837904
  31. Wang, Y., Niu, J., Zhang, L., & Shi, J. (2014). Toxicity assessment of perfluorinated carboxylic acids (Pfcas) towards the rotifer Brachionus calyciflorus. Science of The Total Environment, 491–492, 266–270. https://doi.org/10.1016/j.scitotenv.2014.02.028.
  32. Ali, J. M., Roberts, S. M., Gordon, D. S., & Stuchal, L. D. (2019). Derivation of a chronic reference dose for perfluorohexane sulfonate (Pfhxs) for reproductive toxicity in mice. Regulatory Toxicology and Pharmacology, 108, 104452. https://doi.org/10.1016/j.yrtph.2019.104452
  33. Viberg, H., Lee, I., & Eriksson, P. (2013). Adult dose-dependent behavioral and cognitive disturbances after a single neonatal PFHxS dose. Toxicology, 304, 185–191. https://doi.org/10.1016/j.tox.2012.12.013
  34. Lee, I., & Viberg, H. (2013). A single neonatal exposure to perfluorohexane sulfonate (Pfhxs) affects the levels of important neuroproteins in the developing mouse brain. NeuroToxicology, 37, 190–196. https://doi.org/10.1016/j.neuro.2013.05.007
  35. Vogs , C., Johanson, G., Näslund, M., Wulff, S., Sjödin, M., Hellstrandh, M., Lindberg, J., & Wincent, E. (2019). Toxicokinetics of perfluorinated alkyl acids influences their toxic potency in the zebrafish embryo(danio rerio). Environmental Science & Technology, 53(7), 3898–3907. https://doi.org/10.1021/acs.est.8b07188
  36. Chang, S., Butenhoff, J. L., Parker, G. A., Coder, P. S., Zitzow, J. D., Krisko, R. M., Bjork, J. A., Wallace, K. B., & Seed, J. G. (2018). Reproductive and developmental toxicity of potassium perfluorohexanesulfonate in CD-1 mice. Reproductive Toxicology, 78, 150–168. https://doi.org/10.1016/j.reprotox.2018.04.007
  37. Butenhoff, J. L., Chang, S.-C., Ehresman, D. J., & York, R. G. (2009). Evaluation of potential reproductive and developmental toxicity of potassium perfluorohexanesulfonate in Sprague Dawley rats. Reproductive Toxicology, 27(3), 331–341. https://doi.org/10.1016/j.reprotox.2009.01.004
  38. Cassone, C. G., Vongphachan, V., Chiu, S., Williams, K. L., Letcher, R. J., Pelletier, E., Crump, D., & Kennedy, S. W. (2012). In ovo effects of perfluorohexane sulfonate and perfluorohexanoate on pipping success, development, mrna expression, and thyroid hormone levels in chicken embryos. Toxicological Sciences, 127(1), 216–224. https://doi.org/10.1093/toxsci/kfs072
  39. Kim, S.-J., Heo, S.-H., Lee, D.-S., Hwang, I. G., Lee, Y.-B., & Cho, H.-Y. (2016). Gender differences in pharmacokinetics and tissue distribution of 3 perfluoroalkyl and polyfluoroalkyl substances in rats. Food and Chemical Toxicology, 97, 243–255. https://doi.org/10.1016/j.fct.2016.09.017
  40. Cassone, C. G., Taylor, J. J., O’Brien, J. M., Williams, A., Yauk, C. L., Crump, D., & Kennedy, S. W. (2012). Transcriptional profiles in the cerebral hemisphere of chicken embryos following in ovo perfluorohexane sulfonate exposure. Toxicological Sciences, 129(2), 380–391. https://doi.org/10.1093/toxsci/kfs219
  41. Gordon, S. C. (2011). Toxicological evaluation of ammonium 4,8-dioxa-3H-perfluorononanoate, a new emulsifier to replace ammonium perfluorooctanoate in fluoropolymer manufacturing. Regulatory Toxicology and Pharmacology, 59(1), 64–80. https://doi.org/10.1016/j.yrtph.2010.09.008
  42. Bogdanska, J., Sundström, M., Bergström, U., Borg, D., Abedi-Valugerdi, M., Bergman, Å., DePierre, J., & Nobel, S. (2014). Tissue distribution of 35S-labelled perfluorobutanesulfonic acid in adult mice following dietary exposure for 1-5days. Chemosphere, 98, 28–36. https://doi.org/10.1016/j.chemosphere.2013.09.062 
  43. Chen, F., Wei, C., Chen, Q., Zhang, J., Wang, L., Zhou, Z., Chen, M., & Liang, Y. (2018). Internal concentrations of perfluorobutane sulfonate (PFBS) comparable to those of perfluorooctane sulfonate (PFOS) induce reproductive toxicity in Caenorhabditis elegans. Ecotoxicology and Environmental Safety, 158, 223–229. https://doi.org/10.1016/j.ecoenv.2018.04.032
  44. Chen, L., Lam, J. C. W., Hu, C., Tsui, M. M. P., Lam, P. K. S., & Zhou, B. (2019). Perfluorobutanesulfonate exposure skews sex ratio in fish and transgenerationally impairs reproduction. Environmental Science and Technology, 53(14), 8389–8397. https://doi.org/10.1021/acs.est.9b01711
  45. Chen, L., Tsui, M. M. P., Hu, C., Wan, T., Au, D. W. T., Lam, J. C. W., Lam, P. K. S., & Zhou, B. (2019). Parental Exposure to Perfluorobutanesulfonate Impairs Offspring Development through Inheritance of Paternal Methylome. Environmental Science and Technology, 53(20), 12018–12025. https://doi.org/10.1021/acs.est.9b03865
  46. Chen, L., Tsui, M. M. P., Shi, Q., Hu, C., Wang, Q., Zhou, B., Lam, P. K. S., & Lam, J. C. W. (2018). Accumulation of perfluorobutane sulfonate (PFBS) and impairment of visual function in the eyes of marine medaka after a life-cycle exposure. Aquatic Toxicology, 201, 1–10. https://doi.org/10.1016/j.aquatox.2018.05.018
  47. Hagenaars, A., Vergauwen, L., De Coen, W., & Knapen, D. (2011). Structure-activity relationship assessment of four perfluorinated chemicals using a prolonged zebrafish early life stage test. Chemosphere, 82(5), 764–772. https://doi.org/10.1016/j.chemosphere.2010.10.076
  48. Lou, Q. Q., Zhang, Y. F., Zhou, Z., Shi, Y. L., Ge, Y. N., Ren, D. K., Xu, H. M., Zhao, Y. X., Wei, W. J., & Qin, Z. F. (2013). Effects of perfluorooctanesulfonate and perfluorobutanesulfonate on the growth and sexual development of Xenopus laevis. Ecotoxicology, 22(7), 1133–1144. https://doi.org/10.1007/s10646-013-1100-y
  49. Marziali, L., Rosignoli, F., Valsecchi, S., Polesello, S., & Stefani, F. (2019). Effects of Perfluoralkyl Substances on a Multigenerational Scale: A Case Study with Chironomus riparius (Diptera, Chironomidae). Environmental Toxicology and Chemistry, 38(5), 988–999. https://doi.org/10.1002/etc.4392
  50. Sant, K. E., Venezia, O. L., Sinno, P. P., & Timme-Laragy, A. R. (2019). Perfluorobutanesulfonic acid disrupts pancreatic organogenesis and regulation of lipid metabolism in the Zebrafish, Danio rerio. Toxicological Sciences, 167(1), 157–171. https://doi.org/10.1093/toxsci/kfy237
  51. Domínguez, A., Salazar, Z., Betancourt, M., Ducolomb, Y., Casas, E., Fernández, F., Bahena, I., Salomón, A., Teteltitla, M., Martínez, R., Chaparro, A., Cuapio, P., Salazar-López, C., & Bonilla, E. (2019). Effect of perfluorodecanoic acid on pig oocyte viability, intracellular calcium levels and gap junction intercellular communication during oocyte maturation in vitro. Toxicology in Vitro, 58(April), 224–229. https://doi.org/10.1016/j.tiv.2019.03.041 
  52. Berntsen, H. F., Bjørklund, C. G., Audinot, J. N., Hofer, T., Verhaegen, S., Lentzen, E., Gutleb, A. C., & Ropstad, E. (2017). Time-dependent effects of perfluorinated compounds on viability in cerebellar granule neurons: Dependence on carbon chain length and functional group attached. NeuroToxicology, 63, 70–83. https://doi.org/10.1016/j.neuro.2017.09.005 
  53. Jo, A., Ji, K., & Choi, K. (2014). Endocrine disruption effects of long-term exposure to perfluorodecanoic acid (PFDA) and perfluorotridecanoic acid (PFTrDA) in zebrafish (Danio rerio) and related mechanisms. Chemosphere, 108, 360–366. https://doi.org/10.1016/j.chemosphere.2014.01.080 
  54. Johansson, N., Fredriksson, A., & Eriksson, P. (2008). Neonatal exposure to perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) causes neurobehavioural defects in adult mice. NeuroToxicology, 29(1), 160–169. https://doi.org/10.1016/j.neuro.2007.10.008 
  55. Vanden Heuvel, J. P., Kuslikis, B. I., & Peterson, R. E. (1992). Covalent binding of perfluorinated fatty acids to proteins in the plasma, liver and testes of rats. Chemico-Biological Interactions, 82(3), 317–328. https://doi.org/10.1016/0009-2797(92)90003-4 
  56. Vanden Heuvel, J. P., Kuslikis, B. I., Van Rafelghem, M. J., & Peterson, R. E. (1991). Disposition of perfluorodecanoic acid in male and female rats. Toxicology and Applied Pharmacology, 107(3), 450–459. https://doi.org/10.1016/0041-008X(91)90308-2 
  57. Bookstaff, R. C., Moore, R. W., Ingall, G. B., & Peterson, R. E. (1990). Androgenic deficiency in male rats treated with perfluorodecanoic acid. Toxicology and Applied Pharmacology, 104(2), 322–333. https://doi.org/10.1016/0041-008X(90)90306-F 
  58. Harris, M. W., Uraih, L. C., & Birnbaum, L. S. (1989). Acute toxicity of perfluorodecanoic acid in C57BL/6 mice differs from 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicological Sciences, 13(4), 723–736. https://doi.org/10.1093/toxsci/13.4.723 
  59. Harris, M. W., & Birnbaum, L. S. (1989). Developmental toxicity of perfluorodecanoic acid in C57BL/6N mice. Toxicological Sciences, 12(3), 442–448. https://doi.org/10.1093/toxsci/12.3.442 
  60. Gutshall, D. M., Pilcher, G. D., & Langley, A. E. (1989). Mechanism of the serum thyroid hormone lowering effect of perfluoro-n-decanoic acid (Pfda) in rats. Journal of Toxicology and Environmental Health, 28(1), 53–65. https://doi.org/10.1080/15287398909531328
  61. Van Rafelghem, M. J., Mattie, D. R., Bruner, R. H., & Andersen, M. E. (1987). Pathological and hepatic ultrastructural effects of a single dose of perfluoro-n-decanoic acid in the rat, hamster, mouse, and Guinea pig. Toxicological Sciences, 9(3), 522–540. https://doi.org/10.1093/toxsci/9.3.522
  62. Van Rafelghem, M. J., Inhorn, S. L., & Peterson, R. E. (1987). Effects of perfluorodecanoic acid on thyroid status in rats. Toxicology and Applied Pharmacology, 87(3), 430–439. https://doi.org/10.1016/0041-008X(87)90248-1
  63. Langley, A. E., & Pilcher, G. D. (1985). Thyroid, bradycardic and hypothermic effects of perfluoro-n-decanoic acid in rats. Journal of Toxicology and Environmental Health, 15(3–4), 485–491. https://doi.org/10.1080/15287398509530675
  64. Boujrad, N., Vidic, B., Gazouli, M., Culty, M., & Papadopoulos, V. (2000). The peroxisome proliferator perfluorodecanoic acid inhibits the peripheral-type benzodiazepine receptor (PBR) expression and hormone-stimulated mitochondrial cholesterol transport and steroid formation in Leydig cells. Endocrinology, 141(9), 3137–3148. https://doi.org/10.1210/endo.141.9.7678 
  65. Benninghoff, A. D., Orner, G. A., Buchner, C. H., Hendricks, J. D., Duffy, A. M., & Williams, D. E. (2012). Promotion of hepatocarcinogenesis by perfluoroalkyl acids in rainbow trout. Toxicological sciences : an official journal of the Society of Toxicology, 125(1), 69–78. https://doi.org/10.1093/toxsci/kfr267
  66. Benninghoff, A. D., Bisson, W. H., Koch, D. C., Ehresman, D. J., Kolluri, S. K., & Williams, D. E. (2011). Estrogen-like activity of perfluoroalkyl acids in vivo and interaction with human and rainbow trout estrogen receptors in vitro. Toxicological sciences : an official journal of the Society of Toxicology, 120(1), 42–58. https://doi.org/10.1093/toxsci/kfq379
  67. Ishibashi, H., Yamauchi, R., Matsuoka, M., Kim, J. W., Hirano, M., Yamaguchi, A., Tominaga, N., & Arizono, K. (2008). Fluorotelomer alcohols induce hepatic vitellogenin through activation of the estrogen receptor in male medaka (Oryzias latipes). Chemosphere, 71(10), 1853–1859. https://doi.org/10.1016/j.chemosphere.2008.01.065 

Varying Efficacy and Safety Among Food Allergy Immunotherapy Methods

By Karishma Sira, Biological Sciences ‘21

Author’s Note: This review was originally written for my UWP104F class in Winter Quarter 2021. While environmental allergies are well known to the public, many people are unaware of the social, mental, financial, and most importantly, physical costs of food allergies. I highly benefited from getting treated for food allergies through immunotherapy, so I want to make these methods more known. I want to raise awareness on the available non-avoidant treatments catered to food allergy sufferers and inform readers that these methods are important developments happening in the world of food allergy immunotherapy. This article will also explain the basic mechanisms of immunotherapy, the differences between each delivery method, the relative effectiveness of these methods, and the risks and benefits of each method. These factors should all be considered when recommending a specific method to an allergic individual.  

 

Food allergies are becoming an increasingly common global health crisis. The various consequences of living with food allergies reduces the quality of life for those affected [1]. Aside from the immediate dangers of severe allergic reactions, there is a significant amount of social restrictions and anxiety involved. Dealing with food allergies costs American individuals and families 25 billion dollars annually [2]. Avoidance diets are the most common way to treat food allergies, but they are statistically unsustainable: 75% of peanut-allergic children get accidentally exposed to peanuts by the time they are 5 years old [1]. As a result, allergy immunotherapy is an important developing preventative treatment that can allow individuals to consume allergens to improve quality of life. 

There are three main emerging treatments: oral immunotherapy (OIT), sublingual immunotherapy (SLIT), and epicutaneous immunotherapy (EPIT). All three use different delivery methods to introduce the patient to allergens to achieve desensitization. The different delivery methods may contribute to the different levels of success observed between them.

The guiding principle of food allergy immunotherapy, regardless of delivery method, is to induce a state of prolonged desensitization–defined as an increase in tolerance threshold–to an allergen [3]. This may be achieved by maintaining consumption of allergen over time through doses tailored to the patient’s observed tolerance threshold. Tolerance thresholds are determined with food challenges, where the patient consumes allergens until they experience notable allergic symptoms [4]. Desensitization may be gradually achieved through increases in dosage [3, 4]. Allergen doses slowly increase over time as the patient’s tolerance increases. Administering the allergen this way is thought to familiarize the body with it so that the immune response to the allergen gradually becomes less severe over time [5]. 

Generally, the immune response to allergens is mediated by allergy-specific antibodies called Immunoglobulin E (IgE). Once a food allergen has been ingested and detected by the immune system, IgE activates immune cells that cause inflammation and other allergy symptoms. Immunotherapy attempts to change the immune response so that allergens stimulate non-allergy specific antibodies like Immunoglobulin G (IgG) [5]. IgG antibodies produce a normal immune response to foreign bodies like infections and viruses. Training the body to respond with IgG prevents the allergic response, eliminating adverse allergic symptoms. 

Immunotherapy aims to create a state of long term desensitization known as sustained unresponsiveness (SU). By achieving SU, patients are more likely to retain tolerance even after they stop taking the regular, repeated doses of allergen. Patients with SU can often freely be in the presence of their allergens or even consume them [3, 4]. SU is not considered a “cure” of allergies. Immunotherapy simply aims to change the Immunoglobulin E-mediated allergic response to a less drastic response that has little to no effect on quality of life [1]. SU is less commonly achieved than desensitization across all delivery methods, with only a small subset of patients reaching SU after years of therapy [6]. Nonetheless, SU remains the ideal end goal for all patients [3]. 

 

Delivery Methods

Across all studies cited in this literature review, delivery methods vary in efficacy depending on the food allergen being treated. Discussing the efficacy of each method for individual food allergens would thus require extensive examination and comparison of many individual studies. This level of specificity is not necessary to explain or compare the efficacies of the three immunotherapies. The duration and safety of each treatment seems to widely vary based on the particular allergic response, tolerance threshold, and specific allergens of an individual. Despite these differences, however, much of the research yields consistent results in the overall relative efficacy of each method. As such, this review will describe a general consensus about the effectiveness of each delivery method across many studies. 

 

Delivery Method #1 – Oral Immunotherapy

The first food allergy immunotherapy delivery method, which has recently received Food and Drug Administration (FDA) approval for peanut allergen [7] is oral immunotherapy (OIT). In OIT, the patient ingests allergen protein often in powder form and mixed with other non-allergenic food [5].

OIT has yielded the most promising clinical results out of all immunotherapy delivery methods [5]. Most patients treated with OIT have reached desensitization, though SU is less commonly observed [3]. Adverse allergic reactions are reasonably likely to occur during OIT, though most reactions are mild. All reactions can be promptly addressed within a clinical or hospital setting. Despite this, individuals with severe and fast-acting allergic reactions (e.g. anaphylaxis) may still face risks to their physical well-being [3, 6]. As of now, only an OIT treatment, known as Palforzia, for peanut allergen has been approved by the FDA out of all potential immunotherapies. At this point in time, it has passed clinical trials and requires additional risk assessments, education, and patient counseling for use [7]. 

Adjuvant medications–used in combination with a treatment to enhance or modify its effects are being examined as additional safety measures to make OIT safer. Omalizumab is a monoclonal antibody, an antibody cloned from existing antibodies that can be taken as medicine to assist immune functions. Omalizumab selectively binds to IgE, which occupies IgE enough to suppress the allergic response [8]. Omalizumab appears to have no bearing on the effectiveness of the desensitization process [3]. However, it has been shown to speed up the process and decrease incidence of adverse allergic reactions.  For common allergens like milk and peanut, little to no adverse reactions were observed when Omalizumab was administered to subjects [8]. However, further research and clinical trials with larger sample sizes and a wider array of allergens must be conducted before Omalizumab can be universally used as a safety protocol for food allergy immunotherapy [8].

 

Delivery Method #2 – Sublingual Immunotherapy

The second delivery method is sublingual immunotherapy (SLIT). SLIT requires that liquid or dissolvable extracts of allergens be regularly administered under the tongue, held there for a time, and then swallowed [5]. Using this method, the allergen can be mainly taken into the body by way of antigen presenting cells in the sublingual mucosa found under the tongue. This route avoids enzymes encountered during gastric digestion that might change the structure of the allergen protein. This is useful in ensuring that the immune system becomes fully desensitized to the correct allergen [6]. 

One advantage of SLIT is its safety; adverse allergic reactions and anaphylaxis are not commonly observed [5, 6]. Additionally, using SLIT before OIT is highlighted as a potential benefit. Patients who experience adverse reactions with OIT generally are advised to use SLIT as a stepping stone treatment. This lets them build enough desensitization to make OIT a more viable option, as they experience less side effects [5].

 

Delivery Method #3 – Epicutaneous Immunotherapy

The third delivery method in food allergy immunotherapy is epicutaneous immunotherapy (EPIT). Immune cells in the skin called Langerhans cells help introduce the allergen to the body when dermal patches are applied to the skin [5, 9]. Patches are kept on for increasingly longer durations and replaced as instructed by a physician until the patient is mostly unresponsive to the allergen. At this point, patches must still be worn to maintain results, but need only be replaced every 24 hours [2]. 

Using this route to absorb allergens successfully prevents entry to vasculature, which is thought to limit severe systemic allergic reactions and only results in mild, cutaneous reactions [1, 9]. Similar to SLIT, this makes EPIT’s safety profile better than OIT’s. Additionally, EPIT does not place restrictions on the patient’s lifestyle and does not require close clinical observation like OIT or SLIT [2]. 

 

Comparing Delivery Methods

As mentioned earlier, OIT is largely considered the most effective of the three immunotherapies described. Most patients are successfully desensitized and SU, though still infrequent, it occurs more often than other methods [3, 5]. 

SLIT has shown modest levels of desensitization, but is overall considered less effective than OIT, showing less immunologic changes over time [6]. It does not appear to confer high levels of SU [5]. It is unknown whether this is attributed to the fact that most patients appear to struggle with completing the recommended duration of treatment [9]. 

EPIT also demonstrates levels of desensitization comparable to SLIT, with 28-50% of patients showing tolerance to their allergen on average [1, 2]. SU has not been well documented in either EPIT or SLIT [1], which seems to be the main reason why they do not have FDA approval [2]. 

 

Conclusions

Preventative food allergy immunotherapy has been a developing area of study due to a global increase in food allergy incidence [5]. Three prominent immunotherapy delivery methods have emerged with differing efficacies and safety profiles.

OIT is widely considered the most clinically efficient and promising delivery method, since it consistently produces desensitization [5]. SLIT shows less consistent desensitization [6] and maintaining treatment is difficult for patients. EPIT shows similar results to SLIT [9]. While SU is not commonly achieved, it is more common in OIT [1, 3], which may explain why the only FDA-approved food allergy immunotherapy is OIT for peanut allergen [7]. 

The safety and convenience of each method may also affect patient choice. OIT may be the most effective and quick-acting, but it also runs the largest risk of adverse reactions, which warrants close clinical attention during treatment [3, 6]. In contrast, SLIT does not seem to cause many adverse reactions and is encouraged as a stepping stone treatment for patients that would like to move on to OIT once more tolerance to their allergen is built up. This practice seems to make OIT much safer [5] along with the use of medications like Omalizulab [8]. EPIT is also safer than OIT but has the added advantage of being a convenient and low maintenance treatment [5, 9]. At maintenance, dermal patches used for EPIT only need to be replaced every 24 hours, no clinical observation is required, and there are no restrictions placed on the patient’s lifestyle [2]. 

As allergies become more common across the globe, more children struggle to adhere to avoidance diets and become vulnerable to accidental exposure to allergens [1]. Immunotherapy methods have developed in the hopes of increasing the quality of life of these food allergic individuals [1]. Future research may be able to improve on the observed effects and safety of immunotherapy. Ultimately, any progress will be able to help food allergy sufferers improve their quality of life. 

 

References:

  1. Costa, C., Coimbra, A., Vítor, A., Aguiar, R., Ferreira, A. L., & Todo-Bom, A. (2020). Food allergy – From food avoidance to active treatment. Scandinavian journal of immunology, 91(1), e12824. doi:10.1111/sji.12824
  2. Kim, E. H., & Burks, A. W. (2020). Food allergy immunotherapy: Oral immunotherapy and epicutaneous immunotherapy. Allergy, 75(6), 1337–1346. doi:10.1111/all.14220
  3. Wood R. A. (2017). Oral Immunotherapy for Food Allergy. Journal of investigational allergology & clinical immunology, 27(3), 151–159. doi:10.18
  4. Marcucci, F., Isidori, C., Argentiero, A., Neglia, C., & Esposito, S. (2020). Therapeutic perspectives in food allergy. Journal of translational medicine, 18(1), 302. doi:10.1186/s12967-020-02466-x
  5. Burks, A. W., Sampson, H. A., Plaut, M., Lack, G., & Akdis, C. A. (2018). Treatment for food allergy. The Journal of allergy and clinical immunology, 141(1), 1–9. doi:10.1016/j.jaci.2017.11.004
  6. Scurlock A. M. (2018). Oral and Sublingual Immunotherapy for Treatment of IgE-Mediated Food Allergy. Clinical reviews in allergy & immunology, 55(2), 139–152. doi:10.1007/s12016-018-8677-0
  7. Caccomo, S. (2021). FDA approves first drug for treatment of peanut allergy for children. U.S. Food and Drug Administration. <https://www.fda.gov/news-events/press-announcements/fda-approves-first-drug-treatment-peanut-allergy-children>. 
  8. Dantzer, J. A., & Wood, R. A. (2018). The use of omalizumab in allergen immunotherapy. Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology, 48(3), 232–240. doi:10.1111/cea.13084
  9. Reisacher, W. R., & Davison, W. (2017). Immunotherapy for food allergy. Current opinion in otolaryngology & head and neck surgery, 25(3), 235–241. doi:10.1097/MOO.0000000000000353

Non-Invasive Brain Stimulation Therapies as Therapeutics for Post-Stroke Patients

By Priyanka Basu, Neurobiology, Physiology & Behavior ‘22

Author’s Note: I wrote this review article during my time in UWP102B this past quarter, though my inspiration in digging deeper into this topic came from my personal experience with my uncle who had recently incurred a stroke to his brain leading him to face its detrimental effects. I realized I wanted to investigate the possible solutions there were for him and others, allowing me to consequently further my knowledge about this field of study. I’d love for readers to understand the complexity and dynamics that non-invasive brain stimulation therapies have on post-stroke patients, and its beneficial effects when used in conjunction with other therapies. Though studies are in their preliminary phases and there are quite a bit of unknowns, it is still important to keep in mind the innumerable therapeutics being created that target patient populations experiencing a certain extent of brain damage- their results are absolutely phenomenal.

 

Abstract

Non-invasive brain stimulation therapies have become an overwhelmingly dominant innovation of biotechnology that has proven to be greatly effective for treating post-cerebral damage. Stimulation therapies use magnetic fields that can induce electric fields in the brain by administering intense electric currents that pulse through neural circuits. Although several stimulation therapies exist, the therapies discussed in this review include the most widely used therapeutic technologies: transcranial magnetic stimulation (TMS), repetitive transcranial magnetic stimulation (rTMS), transcranial direct current stimulation (tDCS), and theta-burst stimulation (TBS). Post-stroke patients often experience significant impairments to their sensorimotor systems that may include the inability to make arm or hand movements, while other impairments include memory or behavioral incapacities. Stimulatory therapies have been shown to allow for certain neuronal excitability that can improve the impairments seen in these patients unlike alternative standardized procedures. Although the individual efficacies of stimulation therapies have shown viable outcomes, current research dives into how the use of stimulation therapies in conjunction with secondary therapeutics can have synergistic effects.

 

Introduction:

Basic stimulation therapies were first put to clinical use in 1985 to investigate the workings of the human corticospinal system [1]. The magnetic field that is produced by stimulation is capable of penetrating through the scalp and neural tissue, easily activating neurons in the cortex and strengthening the electrical field of the brain [1]. By inducing depolarizing currents and action potentials in certain regions of the brain, patients with damaged areas of the cerebral cortex found great relief as they regained a degree of normal functionality in their motor, behavioral, or cognitive abilities [1]. 

In recent years, stroke has become the second leading cause of death in the United States [2]. Neurologically speaking, stroke can interrupt blood flow in regions of the brain, such as the motor cortex, weakening overall neurological function throughout the body [2]. Stimulatory therapies are used in these cases to successfully activate neurons which jumpstarts their firing capabilities and rewires the body’s normal functionality [1]. Although certain reperfusion therapies using thrombolysis have been seen to treat certain ischemic (i.e. hemorrhaged) tissue in stroke patients by removing deadly clots in blood vessels, these therapeutics are often starkly inaccessible to the general population because of their price tag and scarcity [2]. Oftentimes, even standard pharmacological drugs prove ineffective [2]. By way of heavy experimentation, scientists have discovered that the brain can simply reconstruct itself through a method called, “cortical plasticity,” allowing for neural connections to be modified back to their normal firing pattern [3]. By understanding this innate and adaptive tool that the brain possesses, researchers invented the method of stimulatory therapies to essentially boost our own neural hardware [2].

Over the years, by investigating how these therapies and their mechanisms can work in conjunction with other therapeutics on post-stroke patients, an in-depth understanding of further possible advantageous therapies can be made. 

 

Mechanism of Non-Invasive Neural Stimulation

Most current noninvasive brain stimulation therapies use similar methodologies involving the induction of magnetic fields or electrical currents along cerebral cortical regions of the skull and brain to induce rapid excitation of neurons [4]. Some of the most common noninvasive brain stimulation (NIBS) techniques currently used are transcranial magnetic stimulation (TMS), repetitive transcranial magnetic stimulation (rTMS), transcranial direct current stimulation (tDCS), and theta-burst stimulation (TBS) [4]. Our brains reorganize innately after stroke or cerebral damage through mechanisms of cortical plasticity [3]. However, non-invasive stimulation therapies can stimulate cortical plasticity by quickly modulating neural connections through electrical activation for efficient neuronal and/or motor recovery after the incident [3]. According to Takeuchi et al., TMS and other similar therapies stimulate the cortex through the scalp and the skull. This method positions a coiled wire over the scalp to generate a local magnetic field [4]. As these magnetic fields are pulsed and begin to enter the brain, they establish an electrical current that stimulates cortical neurons which induces a neuronal depolarization (i.e. excitation) [4]. rTMS involves a similar mechanism as TMS, but it has a greater rate of repetition of the ejected magnetic stimulation inducing a higher frequency current [5]. Meanwhile, TBS therapy is a modification of rTMS. While TBS has a similar degree of frequency to rTMS, TBS involves larger bursts of magnetic stimulation rather than small, frequent action [6]. 

When understanding the degree that noninvasive brain stimulation works on cortical neural plasticity, it is best to see its functionality in the motor cortexone of the most easily damaged regions of the brain in stroke patients [4]. Neuronally, NIBS can excite the damaged hemisphere allowing for an increase in activity of the opposite or ‘ipsilesional’ motor cortex [4]. This excitement is highly inducible and is required for proper motor learning and functioning in normal human behavior [7,8]. In addition, these therapeutics may also induce certain metabolic changes that stimulate our innate neural plastic network for successful post-stroke motor recovery [4]. Over time, and with continuous electric stimulation therapy, long-term potentiation of our neural hardware can lead to swift recovery of the affected hemisphere [3]. By this method of magnetic stimulation on damaged cortical regions of the brain, post-stroke patients can recover faster than ever before. 

 

Excitability of Motor and Behavioral Neural Networks 

Ultimately, NIBS treatments induce excitability of motor and behavioral neural networks that allow for the atrophy of affected cerebral regions and increase neural plasticity in the region [5]. In a study led by Delvaux et al., TMS therapies were used to excite changes in the reorganization of motor cortical areas of post-stroke patients [9]. Scientists investigated a group of 31 patients that experienced an ischemic stroke in their middle cerebral artery which led to severe hand palsy [9]. The patients were clinically assessed with the Medical Research Council, the National Institutes of Health stroke scales, and Barthel Index on certain dates of experimentation after stroke [9]. From the data collected, when damaged regions were measured by electrical motor-evoked potential (MEP) amplitudes, the areas were initially statistically smaller than the unaffected areas, thus indicating a lesser degree of motor activation resulting from the effects of certain damaged regions of the brain [9]. After the affected regions were treated with focal transcranial magnetic stimulation (fTMS), a specific type of TMS therapy, the stimulation ultimately induced excitability of affected motor regions as well as unaffected motor regions due to the inducible nature of connected regions in the brain [9]. This study evaluates a TMS technique involving MEP amplitude measurements and FDI motor maps unique to most other stimulatory therapies, including rTMS, tDCS, and others, helping to physiologically understand the impacts of neurological damage in the brain. Although the study hosted a relatively small sample size of twenty participants, it  can be considered sufficient as per the extremity of the experimental design and scarcity of possible participants. The study participants, ranging between 45 and 80 years old, were tested for any underlying neurological disorders to reduce confounding factors. By testing these participants using a standardized scaling method and MEP potentials, the study qualified as a well-regulated results-directive for a conclusive study despite a relatively small sample size.

A similar study conducted by Boggio et al. further investigated the effects of NIBS on motor and behavioral neural networks by using variant-charged (anodal (+) and cathodal (-)) current stimulations on stroke patients and then identifying enhanced results. The investigation studied a specific brain stimulatory therapeutic (tDCS) on its excitability and potential benefits on post-stroke patients [7]. Investigators were able to test the motor performance and improvements in stroke patients using two experiments [7]. Experiment 1 was conducted during four weekly sessions using sham (controlled magnetic stimulation), anodal (increased magnetic stimulation), and cathodal (decreased magnetic stimulation) transcranial direct current stimulation (tDCS) therapies [7]. In Experiment 2, five daily sessions of only cathodal tDCS treatments were investigated on affected brain regions [7]. The effects were reported following the procedure and blindly evaluated using the Jebson-Taylor Hand Function Test, a standardized test to measure gross motor hand function [7]. Between the two experiments, the most significant motor and behavioral improvements were found using the three stimulations in Experiment 1 [7]. However, when stimulations were compared individually, viable motor functional improvement was still evident with either cathodal or anodal tDCS on unaffected and affected hemispheres respectively when compared to the sham tDCS therapy [7]. Using daily sessions instead of weekly was found to be more beneficial in terms of lasting treatment results [7]. Investigators were able to conclude that their findings show strong support in relation to other tDCS research on motor function improvement in stroke patients [7]. tDCS is considered safe, representative, and inexpensive allowing for the possibility of further research on the technique with a wider range of patients. The study could have included additional evaluations of the different motor capabilities rather than just focusing on the hand itself to allow for variation, additional variables, and details that could supply the research rather than simply validating the technique. Both experiments analyzed above resulted in statistically significant results and represented the excitable capabilities of stimulatory therapies currently used for post-stroke patients. 

 

Effectivity of Alternative Neural Therapeutics in Conjunction with NIBS Therapies 

Although standard NIBS therapies have been shown to provide impressive solutions for post-stroke patients, there have been few studies understanding the prospects of using NIBS in conjunction with other therapies for these patients. Aphasia, a rapid decline of the ability to acknowledge or express speech, is a common neurological disorder often seen in post-stroke patients as a result of damage to speech and language control centers of the brain [10]. A number of therapeutics not only search for solutions to certain post-stroke motor dysfunctionalities, but also the behavioral dysfunctions of stroke including aphasias. For several years, previous studies have investigated the use of intonation-based intervention (melodic intonation therapy (MIT)), on severe non-fluent aphasia patients showing immense benefits [10]. A study conducted by Vines et al. (2011) expanded on these findings and implemented this therapy of MIT alongside an additional brain stimulatory therapy of transcranial direct current stimulation (tDCS) to understand if there are augmented benefits of MIT in patients with non-fluent aphasia [10]. Six patients with moderate to severe non-fluent aphasia underwent three days of anodal-tDCS therapy with MIT and another three days with sham-tDCS therapy with MIT [10]. The two types of treatments were separated by one week and assigned randomly [10]. The study showed that compared to the effects of the sham-tDCS with MIT therapies, the anodal-tDCS with MIT led to statistically significant improvements in the patients’ fluency of speech [10]. The study was able to solidify that the brain can properly reorganize and heal damage to its language centers through combined therapies of anodal-tDCS and MIT thus revamping the neurological activity of non-fluent aphasia patients [10]. However, one important component that was lacking in this experiment was a large number of subjects for reliable results. With six patients in the study, scientists could have increased the number tested to allow for greater sufficiency and valid results. Although this study lacked in size, it did include a range of participant ages relieving confounding effects of age-related neurological differences. 

An additional study important to the investigation of understanding the prospects of conjunctive stimulatory therapy was conducted in 2012 by Avenanti et al. The study sought to understand the possible benefits of combining non-invasive brain stimulation therapies (rTMS) with physical therapy. Many studies have investigated the effects of TMS alone on chronic stroke patients but few have investigated the combination of TMS with physical therapy.  In a double-blind, randomized, experiment, Avenanti et al. (2012) investigated a group of 30 patients who were given either real or sham transcranial magnetic stimulations (rTMS) either before or after physical therapy (PT) [5]. The outcomes of this experiment were evaluated based on dexterity and force manipulations of motor control [5]. The results of the study found that overall, patients that were given real rTMS treatments developed statistically better behavioral and neurophysiological outcomes when used in conjunction with PT but were more greatly enhanced when stimulated before physical therapy in a sequential manner [5]. Improvements were detected in all conjunctive groups (real or sham/before or after PT), and even with PT alone in certain experimental groups [5]. Researchers were able to conclude that treating chronic stroke patients with motor disabilities with rTMS before PT provided optimal results of motor excitability, though its conjunctive outcome was effective as well [5]. With statistically significant results, the study indicates valid conjunctive benefits of both PT and rTMS therapy for the patients evaluated [5]. Regarding the reliability of this study, each method was properly implemented for results to be sustained allowing for proper controls in sham trials [5].  

Conjunctive therapies offer new insight into possible avenues for advantageous treatments for post-stroke patients rather than when used alone. With new investigations in this field of study, unknown outlets are slowly being uncovered, allowing for better solutions to cerebral and ischemic damage. 

 

Conclusion:

Non-invasive brain stimulation (NIBS) therapies are a well-refined and successful therapeutic for post-stroke patients. Although much of the mainstream solutions to damaged cerebral regions are NIBS therapies, current research is still searching to identify qualifying conjunctive therapies with NIBS to ameliorate treatments. Standard stimulatory procedures use measurable magnetic or electric currents to depolarize or excite regions of the brain to stimulate neurons for proper activity. By doing so, our innate system of neural plasticity works with this stimulation to enhance the recovery of damaged cerebral regions. In recent years, scientists have taken a step further and combined stimulatory therapies with additional stroke therapy to further enhance results. Although early research processes have begun, more studies and trials are necessary to provide for sufficient data to strongly confirm their efficacies, even when promising results have already been found. Several studies lack the number of participating patients, data, and resources needed to successfully prove these conjunctive therapies. Further understanding of these treatments through repeated trials, larger sample sizes, and statistically significant results may lead to a better understanding in the future of possible effective conjunctive treatments for post-stroke patients. 

 

References:

  1. Santos MD dos, Cavenaghi VB, Mac-Kay APMG, Serafim V, Venturi A, Truong DQ, Huang Y, Boggio PS, Fregni F, Simis M. 2017. Non-invasive brain stimulation and computational models in post-stroke aphasic patients: single session of transcranial magnetic stimulation and transcranial direct current stimulation. A randomized clinical trial. Sao Paulo Medical Journal. 135(5): 475–480.
  2. Kubis N. Non-Invasive Brain Stimulation to Enhance Post-Stroke Recovery. 2016. Front Neural Circuits. 10:56.
  3. Chen R., Cohen L. G., Hallett M. 2002. Nervous system reorganization following injury. Neuroscience 111, 761–773.
  4. Takeuchi N, Izumi S. 2012. Noninvasive brain stimulation for motor recovery after stroke: mechanisms and future views. Stroke Res Treat. 584727. 
  5. Avenanti A., Coccia M., Ladavas E., Provinciali L., Ceravolo M. G. 2012. Low-frequency rTMS promotes use-dependent motor plasticity in chronic stroke: a randomized trial. Neurology 78, 256–264.
  6. van Lieshout ECC, Visser-Meily JMA, Neggers SFW, van der Worp HB, Dijkhuizen RM. 2017. Brain stimulation for arm recovery after stroke (B-STARS): protocol for a randomised controlled trial in subacute stroke patients. BMJ open. 7(8): e016566.
  7. Boggio P. S., Nunes A., Rigonatti S. P., Nitsche M. A., Pascual-Leone A., Fregni F. 2007. Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients. Restor Neurol Neurosci. 25, 123–129.
  8. Bucur M, Papagno C. 2018. A systematic review of noninvasive brain stimulation for post-stroke depression. Journal of affective disorders. 238: 69–78.
  9. Delvaux V., Alagona G., Gérard P., De Pasqua V., Pennisi G., Maertens de Noordhout A. 2003. Post-stroke reorganization of hand motor area: a 1-year prospective follow-up with focal transcranial magnetic stimulation. Clin. Neurophysiol. 114, 1217–1225.
  10. Vines BW, Norton AC, Schlaug G. 2011.  Non-invasive brain stimulation enhances the effects of melodic intonation therapy. Frontiers in psychology. 2:230.

A Neuroimmunological Approach to Understanding SARS-CoV-2

By Parmida Pajouhesh, Neurobiology, Physiology & Behavior ‘23

Author’s Note: The Coronavirus Disease has undoubtedly affected us in many sectors of our lives. There has been a lot of discussion surrounding the respiratory symptoms induced by the disease but less focus on how contracting the disease can result in long-term suffering. As someone who is fascinated by the brain, I wanted to investigate how COVID-19 survivors have been neurologically impacted post-recovery and what insight it can provide on more severe neurological disorders. 

 

The Coronavirus Disease (COVID-19) has drastically changed our lives over the past fifteen months. The viral disease produces mild to severe symptoms, including fever, chills, and nausea. There are individual differences in the length of recovery, typically ranging from 1-2 weeks after contraction [1]. Once recovered, those infected are assumed to be healthy and “back to normal,” but data shows that this is not the case for some COVID-19 survivors. COVID-19 has resulted in more severe long-term effects for patients, greatly affecting their ability to perform daily tasks. Taking a deeper look into the neuroimmunological side effects of COVID-19 can help explain the long-term symptoms experienced by survivors. 

Developing our knowledge of long-term neurological effects on COVID-19 survivors is crucial in understanding the risk of cognitive impairments, including dementia and Alzheimer’s disease [2].

A team led by Dr. Alessandro Padovani at the University of Brescia recruited COVID-19 survivors with no previous neurological disease or cognitive impairment for check-ins six months after infection [3]. The exam assessed motor and sensory cranial nerves and global cognitive function. The results showed that the most prominent symptoms were fatigue, memory complaints, and sleep disorder.  Notably, these symptoms were reported much more frequently in patients who were older in age and hospitalized for a longer period of time [3]. 

Other symptoms reported include “brain fog,” a loss of taste or smell, and brain inflammation [2]. Researchers hypothesize that the virus does not necessarily need to make its way inside neurons to result in “brain fog” but instead claim that it is an attack on the sensory neurons, the nerves that extend from the spinal cord throughout the body to gather information from the external environment. When the virus hijacks nociceptors, neurons that are specifically responsible for sensing pain, symptoms like brain fog can follow [4].

Theodore Price, a neuroscientist at the University of Texas at Dallas, investigated the relationship between nociceptors and angiotensin-converting enzyme 2 (ACE2), a protein embedded in cell membranes that allows for viral entry when the spike protein of SARS-CoV-2 binds to it [4, 5]. The nociceptors live in clusters around the spinal cord, which are called dorsal root ganglia (DRG). Price determined that a set of DRG neurons did contain ACE2, enabling the virus to enter the cells. The DRG neurons that contained ACE2 had messenger RNA for the sensory protein MRGPRD, which marks neurons with axons concentrated at the skin, inner organs and lungs. If sensory neurons are infected with the virus, it can result in long-term consequences. It might not be the case that the virus is directly entering the brain and infecting the sensory neurons. Alternatively, it is the immune response triggering an effect on the brain, which leads to the breakdown of the blood-brain barrier surrounding the brain [6]. While this area of research is still under investigation, studies have shown that the breakdown of the blood-brain barrier and lack of oxygen to the brain are hallmarks of Alzheimer’s disease and dementia. Scientists are tracking global function to further understand the impact of COVID-19 treatments and vaccines on these neurological disorders. 

Understanding whether the cause of neurological symptoms is viral brain infection or immune activity is important to clinicians who provide intensive care and prescribe treatments [2, 6]. With future studies, researchers plan to further examine the causes of these symptoms. This knowledge will hopefully provide COVID-19 survivors with adequate support to combat these difficulties and reduce their risk of developing a more severe neurological disorder in the future.

 

References :

  1. Sissons, Beth. 2021. “What to Know about Long COVID.” Medical News Today. www.medicalnewstoday.com/articles/long-covid#diagnosis
  2. Rocheleau, Jackie. 2021. “Researchers Are Tracking Covid-19’s Long-Term Effects On Brain Health.” Forbes. www.forbes.com/sites/jackierocheleau/2021/01/29/researchers-are-tracking-covid-19s-long-term-effects-on-brain-health/?sh=59a0bb284303
  3. George, Judy. 2021. “Long-Term Neurologic Symptoms Emerge in COVID-19.” MedPage Today. www.medpagetoday.com/infectiousdisease/covid19/90587
  4. Sutherland, Stephani. 2020. “What We Know So Far about How COVID Affects the Nervous System.” Scientific American. www.scientificamerican.com/article/what-we-know-so-far-about-how-covid-affects-the-nervous-system
  5. Erausquin, Gabriel A et al. 2021. “The Chronic Neuropsychiatric Sequelae of COVID‐19: The Need for a Prospective Study of Viral Impact on Brain Functioning.” Alzheimer’s & Dementia. Crossref, doi:10.1002/alz.12255  
  6. Marshall, Michael. 2020. “How COVID-19 Can Damage the Brain.” Nature. www.nature.com/articles/d41586-020-02599-5?error=cookies_not_supported&code=5b856480-d7e8-4a22-9353-9000e12a8962  

Psychedelics Herald New Era of Mental Health

By Macarena Cortina, Psychology ‘21 

Author’s Note: As a psychology major who used to be a plant biology major, I’m very interested in the arenas where these two fields interact. Such is the case with psychoactive plants and fungi that produce significant alterations in brain chemistry and other aspects of the human psyche. That is why I chose to write about psychedelics and their rebirth in both research and culture. In the past few months, I have seen increasing media coverage of new scientific findings about these substances, as well as legal advancements in their decriminalization, making this a relevant topic in the worlds of psychology and ethnobotany. The history of psychedelics is a long and complicated one, but here I attempt to cover the basics in hopes of demystifying these new powerful therapeutic treatments and informing readers about the latest horizon in mental health. 

 

After decades in the dark, psychedelic drugs are finally resurfacing in the world of science and medicine as potential new tools for mental health treatment. Psychedelics, otherwise known as hallucinogens, are a class of psychoactive substances that have the power to alter mood, perception, and cognitive functions in the human brain. They include drugs such as LSD, magic mushrooms, ayahuasca, MDMA, and peyote [1]. The US has a long and complex history with these drugs, and the resulting criminalization and stigma associated with them have kept psychedelics in the shadows for many years. However, a major shift in society’s opinions of psychedelics is taking place, and a reawakening is happening in the scientific community. Researchers from various disciplines are becoming increasingly interested in unlocking the therapeutic powers of these compounds, especially for those who are diagnosed with mental disorders and are resistant to the treatments that are currently available for them. Whether or not the world is ready for it, the psychedelic renaissance has begun.

Psychedelics have been used by Indigenous communities around the world as part of their cultural, spiritual, and healing traditions for thousands of years. In the Western world, psychedelics were rediscovered in the 1940s by Swiss chemist Albert Hofmann, who accidentally absorbed LSD through his skin while conducting tests for a potential medicine [2]. What followed was an “uninterrupted stream of fantastic pictures, extraordinary shapes, with intense, kaleidoscopic play of colors” [7]. Once LSD was disseminated throughout the world, psychologists began to experiment with it as a psychotomimetic, or a drug that mimics psychosis, in hopes of gaining a better understanding of schizophrenia and similar mental disorders [2, 3]. In the 1950s, as a result of the US government’s fear that communist nations were using mind control to brainwash US prisoners of war, the CIA carried out the top-secret project MK-Ultra, drugging even unwitting subjects with psychedelics in an attempt to learn about potential mind control techniques [4]. Recreational use of psychoactive substances proliferated in the counterculture movement of the 1960s, eventually leading to their criminalization and status as Schedule 1 drugs [5]. This classified them as substances with no medical value and a high potential for abuse—two descriptors we know are not factual [6].  

Now, people seem to be reevaluating their outlook on these formerly demonized drugs and are instead looking for ways to harness psychedelics’ medicinal properties for mental and physical improvement. Momentum is building quickly. Clinical trials are beginning to show real potential in the use of psychedelics for the treatment of depression, anxiety, post-traumatic stress disorder (PTSD), addiction, eating disorders, and emotional suffering caused by diagnosis of a terminal illness. The US Food and Drug Administration (FDA) has already approved the use of ketamine for therapeutic purposes with MDMA and psilocybin set to follow [7]. Psilocybin has also been decriminalized in cities across the US and was completely legalized for medical use in the entire state of Oregon in November 2020. Entrepreneurs and investors are flocking to startups such as MAPS Public Benefit Corporation and Compass Pathways, which are currently developing psychedelic drugs for therapeutic application. Research centers have been cropping up across the country as well, even at prestigious institutions like John Hopkins School of Medicine and Massachusetts General Hospital. 

So how do psychedelics work? In truth, scientists still don’t know exactly what happens to neural circuitry under the influence of these mind-altering drugs. While more research is required to fully understand how psychedelics affect the brain, there are some findings that help clarify this mystery. For example, the major group of psychedelics—called the “classic psychedelics”—closely resembles the neurotransmitter serotonin in terms of molecular structure [8]. This group includes psilocin, one of the important components of magic mushrooms; 5-MeO-DMT, which is present in a variety of plant species and at least one toad species; and LSD, also known as acid [8]. What they all have in common is a tryptamine structure, characterized by the presence of one six-atom ring linked to a five-atom ring [8]. This similarity lends itself to a strong affinity between these psychedelics and serotonin receptors in the cerebral cortex, particularly the receptor 5-HT2A [8]. The implication of this is that psychedelics can have a significant and widespread influence on brain chemistry, given that serotonin is one of the main neurotransmitters in the brain and plays a major role in mood regulation [9].

What follows is a poorly understood cascade of effects that causes disorganized activity across the brain [10]. At the same time, it seems that the brain’s default-mode network gets inhibited. British researcher Robin Carhart-Harris recently discovered this by dosing study participants with either psilocybin or LSD and examining their neural activity with the help of fMRI (functional magnetic resonance imaging). Rather than seeing what most people expected—an excitation of brain networks—Dr. Carhart-Harris found a decrease of neuronal firing in the brain, specifically in the default-mode network. According to Michael Pollan, author of the best-selling book on psychedelics How to Change Your Mind, this network is a “tightly linked set of structures connecting the prefrontal cortex to the posterior cingulate cortex to deeper, older centers of emotion and memory.” Its function appears to involve self-reflection, theory of mind, autobiographical memory, and other components that aid us in creating our identity. In other words, the ego—the conscious sense of self and thus the source of any self-destructive thoughts that may arise—seems to be localized in the default-mode network. This network is at the top of the hierarchy of brain function, meaning it regulates all other mental activity [10].

Therefore, when psychedelics enter the system and quiet the default-mode network, suddenly new and different neural pathways are free to connect, leading to a temporary rewiring of the brain [10]. In many cases, this disruption of normal brain functioning has reportedly resulted in mystical, spiritual, and highly meaningful experiences. Psychedelics facilitate neuroplasticity, thereby helping people break negative thinking patterns and showing them—even temporarily—that it’s possible to feel another way or view something from a different (and more positive) perspective. 

This kind of experience can be immensely helpful to someone who is struggling with a mental health disorder and needs a brain reset. While other techniques, such as meditation and general mindfulness, can help cultivate a similar feeling, they require much more time and effort, something that is not always feasible—and never easy—for those who are severely struggling with their mental health [10]. Psychedelics can help jump-start the process of healing, and their effects can be made even more powerful and long-lasting when coupled with psychotherapy [11]. Talking with a psychiatrist or psychologist after the drug treatment can help integrate and solidify a client’s newly acquired thinking patterns [11]. 

In a study published in The New England Journal of Medicine in April 2021, researchers found that psilocybin works at least as well as leading antidepressant escitalopram [12]. In this double-blind, randomized, controlled trial, fifty-nine participants with moderate-to-severe depression took either psilocybin or escitalopram, along with a placebo pill in both cases. After six weeks, participants in both groups exhibited lower scores on the 16-item Quick Inventory of Depressive Symptomatology–Self-Report (QIDS-SR-16), indicating an improvement in their condition. The difference in scores between the two groups was not statistically significant, meaning that a longer study with a larger sample size is still required to show if there is an advantage to treating depression with psilocybin over conventional drugs [12]. However, one notable difference was that psilocybin seems to take effect faster than escitalopram [13]. As an SSRI (selective serotonin reuptake inhibitor), escitalopram takes a couple months to work, something that’s not helpful for those with severe depression. Psilocybin, then, is suggested to provide more immediate relief to people battling depression [13]. 

In June 2020, a team of researchers at John Hopkins published a meta-analysis of nine clinical trials concerning psychedelic-assisted therapy for mental health conditions such as PTSD, end-of-life distress, depression, and social anxiety in adults with autism [14]. These were all the “randomized, placebo-controlled trials on psychedelic-assisted therapy published [in English] after 1993.” The psychedelics in question included LSD, psilocybin, ayahuasca, and MDMA. Following their statistical meta-analysis of these trials, they found that the “overall between-group effect size at the primary endpoint for psychedelic-assisted therapy compared to placebo was very large (Hedges g = 1.21). This effect size reflects an 80% probability that a randomly selected patient undergoing psychedelic-assisted therapy will have a better outcome than a randomly selected patient receiving a placebo” [14]. 

There were only minimal adverse effects reported from this kind of therapy and no documentation of serious adverse effects [14]. When compared to effect sizes of pharmacological agents and psychotherapy interventions, the effects of psychedelic-assisted therapy were larger, especially considering the fact that participants received the psychedelic substance one to three times prior to the primary endpoint, as opposed to daily or close-to-daily interventions with psychotherapy or conventional medications. Overall, results suggest that psychedelic-assisted therapy is effective—with minimal adverse effects—and presents a “promising new direction in mental health treatment” [14].

At UC Davis, researchers in the Olson Lab recently engineered a drug modeled after the psychedelic ibogaine [15]. This variant, called tabernanthalog (TBG), was designed to induce the therapeutic effects of ibogaine minus the toxicity or risk of cardiac arrhythmias that make consuming ibogaine less safe. TBG is a non-hallucinogenic, water-soluble compound that can be produced in merely one step. In an experiment performed with rodents, “tabernanthalog was found to promote structural neural plasticity, reduce alcohol- and heroin-seeking behavior, and produce antidepressant-like effects.” These effects should be long lasting given that TBG has the ability to modify the neural circuitry related to addiction, making it a much better alternative to existing anti-addiction medications. And since the brain circuits involved in addiction overlap with those of conditions like depression, anxiety, and post-traumatic stress disorder, TBG could help treat various mental health issues [15]. 

As the psychedelic industry begins to emerge, members of the psychedelic community are voicing their concerns about the risks that come with rapid commercialization [7]. Biotech companies, researchers, and therapists should be careful about marketing psychedelics as a casual, quick fix to people’s problems. Psychedelics can occasion intense and profound experiences and should be consumed with the right mindset, setting, and guidance. There are still many unknowns about psychedelic use, especially its long-term effects. Not all individuals should try treatment with psychedelics, especially those with a personal or family history of psychosis. It will also be important to move forward in a way that is respectful to Indigenous traditions and accessible to all people—particularly people of color—without letting profit become the main priority. Some advocates worry that commercialization and adoption into a pharmaceutical model might strip psychedelics of their most powerful transformational benefits and that they will wind up being used merely for symptom resolution [7]. As long as psychedelics’ reintroduction to mainstream medicine is handled mindfully, the world may soon have a new avenue for effective mental health therapy that honors its Indigenous heritage and is accessible to all. 

 

References:

  1. Alcohol & Drug Foundation. Psychedelics. October 7, 2020. Available from https://adf.org.au/drug-facts/psychedelics/
  2. Williams L. 1999. Human Psychedelic Research: A Historical And Sociological Analysis. Cambridge University: Multidisciplinary Association for Psychedelic Studies. 
  3. Sessa B. 2006. From Sacred Plants to Psychotherapy:The History and Re-Emergence of Psychedelics in Medicine. Royal College of Psychiatrists.
  4. History. MK-Ultra. June 16, 2017. Available from https://www.history.com/topics/us-government/history-of-mk-ultra
  5. Beres D. Psychedelic Spotlight. Why Are Psychedelics Illegal? October 13, 2020. Available from https://psychedelicspotlight.com/why-are-psychedelics-illegal/
  6. United States Drug Enforcement Administration. Drug Scheduling. Available from https://www.dea.gov/drug-information/drug-scheduling.
  7. Gregoire C. NEO.LIFE. Inside the Movement to Decolonize Psychedelic Pharma. October 29, 2020. Available from https://neo.life/2020/10/inside-the-movement-to-decolonize-psychedelic-pharma/
  8. Pollan M. How to Change Your Mind: What the New Science of Psychedelics Teaches Us About Consciousness, Dying, Addiction, Depression, and Transcendence. New York: Penguin Press; 2018.
  9. Bancos I. Hormone Health Network. What is Serotonin? December 2018. Available from https://www.hormone.org/your-health-and-hormones/glands-and-hormones-a-to-z/hormones/serotonin#:~:text=Serotonin%20is%20the%20key%20hormone, sleeping%2C%20eating%2C%20and%20digestion
  10. Pollan M, Harris S, Silva J, Goertzel B. December 11, 2020. Psychedelics: The scientific renaissance of mind-altering drugs. YouTube: Big Think. 1 online video: 20 min, sound, color. 
  11. Singer M. 2021. Trip Adviser.Vogue. March issue: 198-199, 222-224. 
  12. Carhart-Harris R, Giribaldi B, Watts R, Baker-Jones M, Murphy-Beiner A, Murphy R, Martell J, Blemings A, Erritzoe D, Nutt DJ. 2021. Trial of Psilocybin versus Escitalopram for Depression. N Engl J Med [Internet]. 384:1402-1411. doi: 10.1056/NEJMoa2032994.
  13. Lee YJ. Business Insider Australia. A landmark study shows the main compound in magic mushrooms could rival a leading depression drug. April 14, 2021. Available from https://www.businessinsider.com.au/psilocybin-magic-mushroom-for-depression-takeaways-from-icl-report-nejm-2021-4
  14. Luoma JB, Chwyl C, Bathje GJ, Davis AK, Lacelotta R. 2020. A Meta-Analysis of Placebo-Controlled Trials of Psychedelic-Assisted Therapy. Journal of Psychoactive Drugs [Internet]. 52(4):289-299. doi: 10.1080/02791072.2020.1769878.
  15. Cameron LP, Tombari RJ, Olson DE, et al. 2020. A non-hallucinogenic psychedelic analogue with therapeutic potential. Nature [Internet]. 589:474–479. https://doi.org/10.1038/s41586-020-3008-z.

Oral Microbiome Imbalances Could Provide Early Warning of Disease

Image caption: Fragments of amyloid precursor protein aggregate in β-amyloid plaques, seen here in dark brown. These plaques have been found in the brains of patients with Alzheimer’s disease. Credit: Wikimedia Commons.

 

By Daniel Erenstein, Neurobiology, Physiology & Behavior ‘21

Author’s Note: I first learned about research on the oral microbiome while covering this year’s annual meeting of the American Association for the Advancement of Science in February. Under the theme of “Understanding Dynamic Ecosystems,” the conference, which was held virtually, welcomed scientists, journalists, students, and science enthusiasts for four days of sessions, workshops, and other talks. The human microbiome, home to trillions of bacteria and other microbes, is as dynamic an ecosystem as they come. This article focuses on the bacteria that live in our mouths and their fascinating role in diseases such as diabetes and chronic kidney disease. With this article, I hope that readers consider further reading on the diverse, lively ecosystems within our bodies. For more stories on the microbiome, The Aggie Transcript is a great place to start.

 

There is more to the oral microbiome than meets the mouth. Established within a few minutes of birth, this diverse community of bacteria, fungi, and other microbes lives on every surface of our mouths throughout our lives [1]. For decades, scientists have researched these microorganisms and their role in dental diseases.

But far less is known about the interactions of these bacteria and their products with other parts of the body, and these interactions could hold a particularly important role in human health.

“We’ve always thought of the mouth as somehow in isolation, that oral health does not somehow impact the rest of the body,” said Purnima Kumar, DDS, MS, PhD, professor of periodontology at Ohio State University, during a session at the American Association for the Advancement of Science annual meeting that took place on February 8 [2].

Scientists, though, are increasingly looking to the oral microbiome for answers to questions about health and disease [3].

“The time is absolutely right for us to start putting the mouth back into the body,” Kumar said during the session “Killer Smile: The Link Between the Oral Microbiome and Systemic Disease.”

Panelists highlighted three systemic diseases — diabetes mellitus, rheumatoid arthritis, and Alzheimer’s disease — and their unexpected connection to disturbances in the oral microbiome [4-6]. A common thread running through all three diseases is an association with periodontitis, a gum disease triggered by the accumulation of bacteria, viruses, and even fungi in dental biofilm, or plaque, on the surface of teeth [7].

In health, there is peace between oral microbes and our immune system. Healthy and frequent communication — molecular diplomacy between bacteria and immune surveillance — maintains stable relations. But microbial imbalances due to bacterial buildup in plaque can cause inflammatory immune reactions, resulting in the gradual breakdown of the barrier between biofilm and gum tissue.

“When you have gum disease, that crosstalk, that communication, that harmony is broken down,” Kumar said.

When bacteria subsequently invade our gum tissues, there are consequences for human disease [8].

Mark Ryder, DMD, professor of periodontology at University of California, San Francisco, studies the role of one such bacterium, Porphyromonas gingivalis, in disease [9]. This bacterium secretes enzymes called gingipains, which are essential for its survival.

In the case of Alzheimer’s disease, these gingipains can travel through the bloodstream, cross the blood-brain barrier, and accumulate in brain regions like the hippocampus, which is involved in memory. There, they help break down an embedded membrane protein called amyloid precursor protein into fragments, which group together in deposits found in people with Alzheimer’s disease.

Further study of gingipains and other microbial products could provide insight into a “critical early event in the initiation and progression of Alzheimer’s disease,” Ryder said.

Similarly, rheumatoid arthritis can be triggered by immune responses to other by-products of P. gingivalis, including protein antibodies that cause joint inflammation, according to Iain Chapple, BDS, PhD, professor of periodontology at the University of Birmingham [5].

Past research on links between the oral microbiome and systemic disease has even shown that these effects can travel a two-way street.

This is apparent in the research of Dana Graves, DDS, DMSc, professor of periodontics at University of Pennsylvania, whose work has examined the effects of diabetes on our microbiome, and vice versa [4].

“Diabetes impacts the mouth in a very profound way,” said Graves, adding that the inflammatory responses to bacteria caused by diabetes lead to disruption of the microbiome.

“This bidirectionality is something we saw first with diabetes, we’ve seen it now with rheumatoid arthritis, and it appears now that we’re starting to see it with chronic kidney disease,” Chapple said. “We need to start really digging down into [biological mechanisms] to understand more about that relationship.”

However, the verdict is still out on how much bacterial products such as gingipains contribute to disease. For Ryder and others, the existing data is insufficient — fully answering that question depends on carefully constructed clinical trials.

“When we’re trying to establish a link between something like the microbiome and the mouth and Alzheimer’s, association studies are important, the actual underlying biological mechanisms are important, but finally what sort of seals the deal, of course, is the actual effects of intervention,” Ryder said.

An ongoing clinical trial with more than 600 patients is evaluating the success of gingipain inhibitors in preventing symptoms of Alzheimer’s disease [10]. The results, expected by the end of this year, could carry implications not just for the treatment of Alzheimer’s disease but any disease with underlying roots in the oral microbiome.

Regardless of the results, it’s clear that breaking out the toothbrush and floss every day is crucial to our overall well-being.

 

References:

  1. Ursell LK, Metcalf JL, Parfrey LW, Knight R. 2012. Defining the human microbiome. Nutr Rev. 70 Suppl 1: S38-S44. https://doi.org/10.1111/j.1753-4887.2012.00493.x.
  2. Kumar P, D’Souza R, Shaddox L, Burne RA, Ebersole J, Graves D, Ryder MI, Chapple I. 2021. Killer Smile: The Link Between the Oral Microbiome and Systemic Disease [Conference presentation]. AAAS Annual Meeting [held virtually]. https://aaas.confex.com/aaas/2021/meetingapp.cgi/Session/27521.
  3. Deo PN, Deshmukh R. 2019. Oral microbiome: Unveiling the fundamentals. J Oral Maxillofac Pathol. 23(1): 122-128. doi:10.4103/jomfp.JOMFP_304_18.
  4. Graves DT, Ding Z, Yang Y. 2020. The impact of diabetes on periodontal diseases. Periodontol 2000. 82(1): 214-224. https://doi.org/10.1111/prd.12318.
  5. Lopez-Oliva I, Paropkari AD, Saraswat S, Serban S, Yonel Z, Sharma P, de Pablo P, Raza K, Filer A, Chapple I, et al. 2018. Dysbiotic subgingival microbial communities in periodontally healthy patients with rheumatoid arthritis. Arthritis Rheumatol. 70(7): 1008-1013. https://doi.org/10.1002/art.40485.
  6. Dioguardi M, Crincoli V, Laino L, Alovisi M, Sovereto D, Mastrangelo F, Lo Russo L, Lo Muzio L. 2020. The Role of Periodontitis and Periodontal Bacteria in the Onset and Progression of Alzheimer’s Disease: A Systematic Review. J Clin Med. 9(2): 495. https://doi.org/10.3390/jcm9020495.
  7. Arigbede AO, Babatope BO, Bamidele MK. 2012. Periodontitis and systemic diseases: A literature review. J Indian Soc Periodontol. 16(4): 487-491. https://doi.org/10.4103/0972-124X.106878.
  8. Curtis MA, Diaz PI, Van Dyke TE. 2020. The role of the microbiota in periodontal disease. Periodontol 2000. 83(1): 14-25. https://doi.org/10.1111/prd.12296.
  9. Ryder MI. 2020. Porphyromonas gingivalis and Alzheimer disease: Recent findings and potential therapies. J Periodontol. 91 Suppl 1: S45-S49. https://doi.org/10.1002/JPER.20-0104.
  10. Cortexyme Inc. 2021. GAIN Trial: Phase 2/3 Study of COR388 in Subjects With Alzheimer’s Disease. ClinicalTrials.Gov. Identifier NCT03823404. https://clinicaltrials.gov/ct2/show/NCT03823404.

The Human-Animal Interface: Exploring the Origin, Present, and Future of COVID-19

By Tammie Tam, Microbiology ‘22

Author’s Note: Since taking the class One Health Fundamentals (PMI 129Y), I have been acutely aware of this One Health idea that the health of humankind is deeply intertwined with the health of animals and our planet. This COVID-19 pandemic has been a perfect model as a One Health issue. Through this article, I hope to introduce readers to a fuller perspective of COVID-19 as a zoonotic disease. 

 

The COVID-19 pandemic has escalated into a human tragedy, measured daily by an increasing number of infection cases and a piling death toll. Yet, to understand the current and future risks of the SARS-CoV-2 virus, one must account for the virus’s relationship with animals in the context of its zoonotic nature, as the transmission between animals and humans is often overlooked. Uncovering the range of intermediary hosts of the virus may provide clues to the virus’s origin, point to potential reservoirs for a mutating virus, and help inform future public health policies. As a result, a small but growing body of researchers is working to predict and confirm potential human-animal transmission models.

The origin of the SARS-CoV-2

Currently, the World Health Organization (WHO) and other disease detectives are still working to unravel the complete origin of the virus. Scientists have narrowed down the primary animal reservoir for the virus through viral genomic analysis, between strains of human and animal coronaviruses [1]. They suspect bats to be the most likely primary source of the virus because the SARS-CoV-2 strain is a 96.2 percent match for a bat coronavirus, bat-nCoV RaTG13 [1]. Despite the close match, the differences in key surface proteins between the two viruses are distinct enough to suggest that the bat coronavirus had to have undergone mutations through one or more intermediary hosts in order to infect humans [2]. 

To identify potential intermediate hosts, scientists are examining coronaviruses specific to different animal species [1]. If SARS-CoV-2 is genetically similar to another animal-specific coronavirus, SARS-CoV-2 may also possess similar viral proteins to the animal-specific coronaviruses. With similar proteins, similar host-virus interactions can theoretically take place, allowing for SARS-CoV-2 to infect the animal in question. For example, besides bats, a pangolin coronavirus, pangolin-nCoV, has the second highest genetic similarity to SARS-CoV-2, which positions the pangolin as a possible intermediate host [3]. Because of the similarity, viral proteins of the pangolin coronavirus can interact with shared key host proteins in humans just as strongly as in pangolin [4]. However, more epidemiological research is needed to determine whether a pangolin had contracted coronavirus from a human or a human had contracted coronavirus from a pangolin. Alternatively, the intermediate host could have been another animal, but there are still no clear leads [1]. 

What it takes to be a host for SARS-CoV-2

In any viable host, the SARS-CoV-2 virus operates by sneaking past immune defenses, forcing its way into cells, and co-opting the cell’s machinery for viral replication [5]. Along the way, the virus may acquire mutations—some deadly and some harmless. Eventually, the virus has propagated in a high enough quantity to jump from its current host to the next [5].

Most importantly for the virus to infect a host properly, the virus must recognize the entranceway into cells quickly enough before the host immune system catches on to the intruder and mounts an attack [5]. SARS-CoV-2’s key into the cell is through its spike glycoproteins found on the outer envelope of the virus. Once the spike glycoproteins interact with an appropriate angiotensin-converting enzyme 2 (ACE2) receptor found on the host cell surfaces, the virus blocks the regular functions of the ACE2 receptor, such as regulating blood pressure and local inflammation [6,7]. At the same time, the interaction triggers the cell to take in the virus [5]. 

Since the gene encoding for the ACE2 receptor is relatively similar among humans, the virus can travel and infect the human population easily. Likewise, most animals closely related to humans like great apes possess a similar ACE2 receptor in terms of structure and function, which allows SARS-CoV-2 a path to hijack the cells of certain non-human animals [8]. Despite the overall similar structure and function, the ACE2 receptor varies between animal species at key interaction sites with the spike glycoproteins due to natural mutations that are kept to make the ACE2 receptor the most efficient in the respective animal. Thus, while there are other proteins involved in viral entry into the host cells, the ACE2 receptor is the one that varies between animals and most likely modulates susceptibility to COVID-19 [9]. 

As a result, scientists are particularly interested in the binding of the ACE2 receptor with the viral spike glycoprotein because of its implications for an organism’s susceptibility to COVID-19. Dr. Xuesen Zhao and their team from Capital Medical University examined the sequence identities and interaction patterns of the binding site between ACE2 receptors of different animals and the spike glycoproteins of the SARS-CoV-2 [10]. They reasoned that the more similar the ACE2 receptor of an animal is to humans, the more likely the virus could infect the animal. For example, they found ACE2 receptors of rhesus monkeys, a closely related primate, had similar interaction patterns as humans [10]. Meanwhile, they found rats and mice to have dissimilar ACE2 receptors and poor viral entry [10].

While entrance into the cell is a major part of infection, there are other factors to also consider, such as the ability for viral replication to subsequently take place [11]. With so many different organisms on the planet, the models simply provide a direction for where to look next. SARS-CoV-2 is unable to replicate efficiently in certain animals despite having the entrance key to get in. For example, the virus is able to replicate well in ferrets and cats, making them susceptible to the virus [12]. In dogs, the virus can only weakly replicate. Meanwhile in pigs, chickens, and ducks, the virus is unable to replicate [12]. Outside of the laboratory, confirmed cases in animals include farm animals such as minks; zoo animals such as gorillas, tigers, lions, and snow leopards; and domestic animals such as cats and dogs [13].

The future for SARS-CoV-2

Due to the multitude of intermediary hosts, COVID-19 is unlikely to disappear for good even if every person is vaccinated [14]. Viral spillover from human to animal can spill back to humans. Often, as the virus travels through a new animal population, the virus population will be subjected to slightly different pressures and selected for mutations that will confer a favorable advantage for virus survival and transmission within the current host population [15]. Sometimes, this could make the virus weaker in humans. However, there are times when the virus becomes more virulent and dangerous to humans if it spills back over from the animal reservoir [15]. Consequently, it is important to understand the full range of hosts in order to put in place preventative measures against viral spillover. 

As of now, most of the known susceptible animals usually do not get severely sick with some known exceptions like minks [1]. Nevertheless, people must take precautions when interacting with animals, since research into this area is still developing and there are many unknown factors involved. This is especially important for endangered species to not become sick, because they already face other threats that make them vulnerable to extinction [8]. As a result, some researchers are taking it into their own hands to keep certain animals safe. For example, after the San Diego Zoo’s resident gorillas contracted COVID-19 in January, the zoo proactively began using the experimental Zoetis vaccine to vaccinate their orangutans and bonobos, which are great apes that are considered closely related to humans and susceptible to COVID-19 [16]. Due to an assumed COVID-19 immunity in the gorillas and a limited supply of the Zoetis vaccines, they decided to not vaccinate the gorillas [16]. Now, scientists are trying to modify the Zoetis vaccine for minks, because minks are very susceptible to severe symptoms from COVID-19 and have shown to be able to transmit the virus back to humans [17]. 

Besides the virus mutating into different variants through basic genetic mutations, people must be cautious of potential new coronaviruses which can infect humans [18]. The human population has encountered other novel coronaviruses over the past several years, so it is not out of the question. In animals, if two coronaviruses of a human and an animal infect the same animal host, it could cause a recombination event and create a new hybrid coronavirus [19]. 

For the SARS-CoV-2 virus, Dr. Maya Wardeh and their team at the University of Liverpool found over 100 possible host species where recombination events could take place [18]. These hosts are animals who can contract two or more coronaviruses with one of them being the SARS-CoV-2 virus. For instance, the lesser Asiatic yellow bat, a well-known host of several coronaviruses, is predicted to be one of these recombination hosts [18]. Also, species closer to home such as the domestic cat is another possible recombination host [18]. While it will take many different rare events, from co-infection to human interaction with the particular animal for recombination to be possible, scientists are on the lookout.

Even without a full picture, the Center for Disease Control (CDC) understands the potential risks of animal reservoirs and advises COVID-19-infected patients to stay away from animals—wildlife or domestic—to prevent spillover [20]. COVID-19 has also brought to light zoonotic disease risks from illegal animal trades and wet markets. Once research into the human-animal transmission model becomes more well-developed, public health officials will have a clearer picture as to how the pandemic spiraled to its current state and help develop policies to prevent it from happening again. 

 

References: 

  1. Zhao J, Cui W, Tian BP. 2020. The Potential Intermediate Hosts for SARS-CoV-2. Frontiers in Microbiology 11 (September): 580137. https://doi.org/10.3389/fmicb.2020.580137
  2. Friend T, Stebbing J. 2021. What Is the Intermediate Host Species of SARS-CoV-2? Future Virology 16 (3): 153–56. https://doi.org/10.2217/fvl-2020-0390.
  3. Lam TT, Jia N,  Zhang YW, Shum MH, Jiang JF,  Zhu HC,  Tong YG, et al. 2020. Identifying SARS-CoV-2-Related Coronaviruses in Malayan Pangolins. Nature 583 (7815): 282–85. https://doi.org/10.1038/s41586-020-2169-0
  4. Wrobel AG, Benton DJ, Xu P, Calder LJ, Borg A, Roustan C, Martin SR, Rosenthal PB, Skehel JJ, Gamblin SJ. 2021. Structure and Binding Properties of Pangolin-CoV Spike Glycoprotein Inform the Evolution of SARS-CoV-2. Nature Communications 12 (1): 837. https://doi.org/10.1038/s41467-021-21006-9
  5. Harrison AG, Lin T, Wang P. 2020. Mechanisms of SARS-CoV-2 Transmission and Pathogenesis. Trends in Immunology 41 (12): 1100–1115. https://doi.org/10.1016/j.it.2020.10.004
  6. Hamming I, Cooper ME, Haagmans BL, Hooper NM,Korstanje R, Osterhaus  ADME, Timens  W, Turner  AJ, Navis G, van Goor H. 2007. The Emerging Role of ACE2 in Physiology and Disease. The Journal of Pathology 212 (1): 1–11. https://doi.org/10.1002/path.2162.
  7. Sriram K, Insel PA. 2020. A Hypothesis for Pathobiology and Treatment of COVID‐19 : The Centrality of ACE1 / ACE2 Imbalance. British Journal of Pharmacology 177 (21): 4825–44. https://doi.org/10.1111/bph.15082
  8. Melin AD, Janiak MC, Marrone F, Arora PS, Higham JP. 2020. Comparative ACE2 Variation and Primate COVID-19 Risk. Communications Biology 3 (1): 641. https://doi.org/10.1038/s42003-020-01370-w
  9. Brooke GN, Prischi F. 2020. Structural and Functional Modelling of SARS-CoV-2 Entry in Animal Models. Scientific Reports 10 (1): 15917. https://doi.org/10.1038/s41598-020-72528-z.
  10. Zhao X, Chen D, Szabla R, Zheng M, Li G, Du P, Zheng S, et al. 2020. Broad and Differential Animal Angiotensin-Converting Enzyme 2 Receptor Usage by SARS-CoV-2. Journal of Virology 94 (18). https://doi.org/10.1128/JVI.00940-20.
  11. Manjarrez-Zavala MA, Rosete-Olvera DP, Gutiérrez-González LH, Ocadiz-Delgado R, Cabello-Gutiérrez C. 2013. Pathogenesis of Viral Respiratory Infection. IntechOpen. https://doi.org/10.5772/54287
  12. Shi J, Wen Z, Zhong G, Yang H, Wang C, Huang B, Liu R, et al. 2020. Susceptibility of Ferrets, Cats, Dogs, and Other Domesticated Animals to SARS–Coronavirus 2. Science 368 (6494): 1016–20. https://doi.org/10.1126/science.abb7015.
  13. Quammen D. And Then the Gorillas Started Coughing. The New York Times. Accessed February 19, 2021. Available from: https://www.nytimes.com/2021/02/19/opinion/covid-symptoms-gorillas.html
  14. Phillips N. 2021. The Coronavirus Is Here to Stay — Here’s What That Means. Nature 590 (7846): 382–84. https://doi.org/10.1038/d41586-021-00396-2
  15. Geoghegan JL, Holmes EC. 2018. The Phylogenomics of Evolving Virus Virulence. Nature Reviews Genetics 19 (12): 756–69. https://doi.org/10.1038/s41576-018-0055-5
  16. Chan S, Andrew S. 2021. Great Apes at the San Diego Zoo Receive a Covid-19 Vaccine for Animals. CNN. Accessed March 5, 2021. Available from: https://www.cnn.com/2021/03/05/us/great-apes-coronavirus-vaccine-san-diego-zoo-trnd/index.html
  17. Greenfield P. 2021. Covid Vaccine Used on Apes at San Diego Zoo Trialled on Mink. The Guardian.Accessed March 23, 2021. Available from: http://www.theguardian.com/environment/2021/mar/23/covid-vaccine-used-great-apes-san-diego-zoo-trialled-mink
  18. Wardeh M, Baylis M, Blagrove MSC. 2021. Predicting Mammalian Hosts in Which Novel Coronaviruses Can Be Generated. Nature Communications 12 (1): 780. https://doi.org/10.1038/s41467-021-21034-5.
  19. Pérez-Losada M, Arenas M, Galán JC, Palero F, González-Candelas F. 2015. Recombination in Viruses: Mechanisms, Methods of Study, and Evolutionary Consequences. Infection, Genetics and Evolution 30 (March): 296–307. https://doi.org/10.1016/j.meegid.2014.12.022.
  20. Centers for Disease Control and Prevention. 2020. COVID-19 and Your Health. Accessed February 11, 2020. Available from: https://www.cdc.gov/coronavirus/2019-ncov/daily-life-coping/animals.html.

Human Cryopreservation: An Opportunity for Rejuvenation

By Barry Nguyen, Biochemistry & Molecular Biology ‘23

Author’s Note: I became interested in ways to bypass built-in lifespans after taking HDE 117, a longevity class with Dr. James Carey. During the course of the class, I was exposed to many different ways to extend the human lifespan. However, I was most interested in cryogenics and its prospects of human rejuvenation, prompting me to explore the possibilities of human cryopreservation. 

 

Summary

This paper is focused on exploring the prospects of human cryopreservation. The first section discusses cryogenics and its relevance in the discussion of human cryopreservation. The following section utilizes empirical modeling to support the relationship between temperature and reaction rates. Next, the paper discusses the cryopreservation procedure itself and explores how the definition of death can be reimagined. We then transition to discussing cryopreservation’s possibility for rejuvenation. Specifically, we redefine the definition of aging itself and discuss aging phenomena on the molecular scale and use both of these as a basis for the discussion of immortality. The succeeding section is concerned with the limitations of human cryopreservation. Finally, the paper concludes with a brief discussion of the possible future of cryogenic technology. 

Cryogenics

Cryogenics is a field of study focused on material behaviors at very low temperatures, ranging from -150°C to -273°C. At these extremely low temperatures, chemical properties are altered, and molecular interactions are halted [1]. By halted, it is not correct to say that all molecular interactions have been stopped. Rather, the molecular interactions have come as close to theoretically possible to ceasing and are at the lowest possible energy state. At these temperatures, chemical properties are also altered and unique phenomena emerge, allowing for extensive applications, most notably human cryopreservation. Because heat is related to the motion of particles, at these temperatures the biochemical activities within living systems are effectively reduced [9]. The prospects for preserving an individual at extremely cold temperatures have been increasing throughout the years as research within the field continues to develop. As of now, human cryopreservation seems more of a speculation than reality. Freezing an individual is one thing, but there is no guarantee that the individual will wake up from such an extensive period of suspension. Although extremely low temperatures serve as an appropriate basis for human cryopreservation, many more factors must be considered to avoid consequences that may occur during the procedure and after revival.

Empirical Modeling

The rates of biochemical processes at extremely low temperatures can be modeled mathematically [4]. The Arrhenius equation, proposed by Arrhenius in 1889, establishes a relationship between temperature and reaction rates. In figure 1, K is the reaction rate, Ea is the activation energy, A is the frequency factor (related to the orientations of molecules necessary to produce a favorable reaction), R is the universal gas constant, and T is the temperature. Manipulating the equation, we produce a form that directly shows the relationship between the reaction rate and temperature, as depicted in Figure 2. We will use the enzyme lactate dehydrogenase to illustrate the relationship between K and T [4]. With its activation energy defined as 54, 810 J/mol, we can explore the enzyme’s reaction rate at a 10°C difference. With T1 and T2 at 40°C and 30°C respectively, we get a reaction rate ratio of 2.004. This tells us that a 10°C difference is enough to cut the reaction rate of the enzyme exactly in half.  

The relationship between reaction rates and temperature, as expressed by the Arrhenius equation, lends weight to the viability of cryopreservation. If a 10°C difference is enough to cut a reaction rate in half, imagine how much the reaction rate would be reduced within cryonically preserved individuals at extremely low temperatures. Furthermore, the biochemical processes that are occurring in the body at these levels are paused—not in the sense of being physically stopped, but rather the time needed for the processes to go to completion is relatively infinite. 

Figure 1. The Arrhenius equation Figure 2. Manipulation of the Arrhenius equation to compare reaction rates at two different temperatures

 

Human Cryopreservation

By understanding that at these extremely low temperatures, biochemical reaction rates are suppressed, the practice of cryogenically preserving a whole individual became a reality [14]. For this process to begin, the individual must be induced in the death state. Once an individual enters the initial stages of death, the human body initiates its decomposition phase. The body’s cell walls begin to break down and in turn, release digestive enzymes that process the tissues in the body [11]. Because the body begins to break down at such a rapid pace, it is imperative that the patient, once induced in the death stage, be worked on immediately.

 The process of chilling the human body to extremely low temperatures is a delicate and slow process and is very important in the initial steps of the cryopreservation procedure. Once the patient arrives in the death state, the circulation and respiration of the cryonic subject is restored and they are ready to be cooled [4]. First, the subject’s blood is replaced with 10% cryoprotectants to prevent ice formation. A small percentage of cryoprotectants are added initially to avoid an elevated osmotic shrinking response. Once the intracellular and extracellular cryoprotectant volume reaches equilibrium, the cells are ready for cooling which is done at a very slow pace (1°C/min) [5].

The cryoprotectant used typically consists of nutritional salts, buffers, osmogens, and apoptosis inhibitors, ingredients necessary in the maintenance of isotonic concentrations of the cell [5]. In doing so, cells within the human body can avoid swelling and shrinking. Additionally, another key formulation of cryoprotectant mixture is non-penetrating cryoprotectants which are typically large molecular polymers. These play a large part in the inhibition of ice growth and prevention of injury due to being subjected to the extreme cold [5]. 

To understand the prospects of human cryopreservation, it is helpful to redirect ourselves back to the definition of death. In 1988, the scientific community reviewed and redefined the definition of death from being in cardio-respiratory arrest to brain death [8]. In cryonically preserved patients, the extremely cold temperatures are thought to preserve the neural structures, which store long-term memory and the identity of the person. In this way, utilizing extremely low temperatures to preserve neural structures and prevent them from being compromised is a prospect worth noting. Individuals who are cryonically preserved should not be viewed as being dead or alive, but rather be viewed as being temporarily suspended in time [8]. The normal cycles of biological processes such as growth and decay are paused, providing an opportunity for resuscitation and reanimation in the future [10]. To give a new perspective, cryopreservation can be viewed similarly to frozen embryos: just as embryos preserved in extremely cold temperatures gain life once implanted in a uterus, the cryopreserved patient may reenter the living state through the process of human reanimation. 

Prospects for Immortality

The process of human cryopreservation aims to allow individuals to escape imminent death by first being induced into a transient death state [8]. Essentially, individuals are given the opportunity to bypass human mortality. Dr. James Hiram Bedford, a former psychology professor at UC Berkeley had his life threatened by renal cancer. He decided to undergo the cryopreservation process and became the first human to be cryonically preserved in 1967 [13]. By agreeing to enter this process, he hoped that, in the future, technology would be advanced enough to revive him and cure his illness. Ever since interests in cryopreservation have increased substantially, and as of 2014, about 250 corpses have been cryogenically preserved in the US [13].

Shifting Views on Aging

Aging is a degradative process that entails a whole array of pathologies. If we were to view aging as a disease itself that can be treated, cryopreservation opens a wide range of possibilities. Specifically, the process of cryopreservation allows an individual to avoid the effects of aging pathologies by having the opportunity to be treated once technology has advanced enough. This provides hope to bypass the mechanically built-in lifespans of humans, and essentially, provides prospects for immortality.

On a larger scale, as we age, the probability of dying increases significantly [7]. To put it simply, as we age, there are more health factors in place to compete for our lives and the chance of survival through older ages decreases. In such cases, aging can be correlated with functional decline. Similarly, on the molecular scale, aging can be seen as a direct consequence of telomere shortening [6]. Telomeres are nucleoprotein structures that exist at the ends of chromosomes and are essential to the integrity of our DNA. During the process of DNA replication, telomeres protect the ends of chromosomes and prevent loss of genetic information [16]. However, as we age, and as our body continues to undergo DNA replication, the telomeres shorten leading to the joining of ends of various chromosomes, pathological cell division, genomic instability and apoptosis. 

In short, the health consequences that come with aging are inevitable but human cryopreservation can be seen to offset these inevitable aging phenomena. The process allows an individual who is suffering from a presently incurable disease to be temporarily frozen in time. In this way, they may be revived when society is advanced enough to deal with the disease successfully. In essence, the human cryopreservation process can be seen to bypass inevitable health consequences, providing rejuvenating possibilities for any individual.

Technological Limitations 

Although successfully preserving an individual through extreme temperatures is certainly an exciting prospect, little evidence exists to indicate that successful preservation and remanimation is possible [15]. At present, there are many challenges that need to be overcome to even support the viability of such an extensive process. According to Professor Armitage, the director of tissue banking at the University of Bristol, preserving the whole human body is an entirely new challenge [15]. Society is not even at the stage of cryopreserving organs. Organs, alone, are very complex, containing different types of cells and blood vessels that all need to be preserved. Similarly, Barry Fuller, another professor at the University of College London, has stated that before exploring the prospects of human cryopreservation, society must be able to demonstrate that human organs can be cryopreserved for transplantation [15]. Hence, as of current, there is close to zero evidence that a whole human body can survive cryopreservation. 

In the previous section, we discussed the arrhenius equation which derived the relationship between temperature and metabolic rates. However, the equation itself does not explore the consequences of raising the temperature of the human body during reanimation. While thawing, the frozen tissues and cells can experience physical disruptions which can damage them [3]. To a greater extent, an individual’s epigenetic markers can even be affected, causing epigenetic reprogramming, which can change the expression of certain genes. However, the biggest hurdle is the successful preservation of the brain. The human brain is arguably one of the most important organs in the body, and cryopreservation must be successful in preserving the integrity of the neural structures. Prospects of successfully cryopreserving whole human brains are slim due to minimal research. Moreover, experiments with frozen whole animals’ brains have not been reported since the 1970s [3]. Obviously, research on this matter is severely limited.

Discussion 

Despite the overwhelming uncertainties surrounding human cryopreservation and society’s current limits, the prospects of being able to defy death or possibly avoiding it in the future are becoming a topic of increasing interest. When an individual is brought to the brink of death, the uncertainties around the cryopreservation procedure, specifically its unproven track record of success, seem inconsequential in the long run. If society were to overlook the field of preservation based purely on unsubstantiated results and the unlikelihood of success, advancements would never occur. All in all, the increase in technological advancements and research within cryogenics is making the prospects of reviving a frozen individual in the future ever so likely. 

 

References:

  1. Britannica, T. Editors of Encyclopaedia. “Cryogenics.” Encyclopedia Britannica, May 26, 2017. https://www.britannica.com/science/cryogenics.
  2. “What Is Cryogenics? “Gaslab.com. Accessed May 2, 2021. https://gaslab.com/blogs/articles/what-is-cryogenics
  3. Stolzing, Alexandra . “Will We Ever Be Able to Bring Cryogenically Frozen Corpses Back to Life? A Cryobiologist Explains.” The Conversation, March 26, 2019. https://theconversation.com/will-we-ever-be-able-to-bring-cryogenically-frozen-corpses-back-to-life-a-cryobiologist-explains-69500.
  4. Best, Benjamin P. “Scientific Justification of Cryonics Practice.” Rejuvenation Research 11, no. 2 (2008): 493–503. https://doi.org/10.1089/rej.2008.0661. 
  5. Bhattacharya, Sankha. “Cryoprotectants and Their Usage in Cryopreservation Process.” Cryopreservation Biotechnology in Biomedical and Biological Sciences, 2018. https://doi.org/10.5772/intechopen.80477.
  6. Blasco, M. A. “Telomere length, Stem Cells and Aging.” Nature Chemical Biology, 3, no.10 (September 2007): 640–649. doi:10.1038/nchembio.2007.38
  7. Carey, J.R. 2020, June 13. Limits of morbidity compression. Longevity (HDE/ENT 117) lecture notes, UC Davis.
  8. Cohen, C. “Bioethicists Must Rethink the Concept of Death: the Idea of Brain Death Is Not Appropriate for Cryopreservation.” Clinics 67, no. 2 (2012): 93–94. https://doi.org/10.6061/clinics/2012(02)01. 
  9. Jang, Tae Hoon, Sung Choel Park, Ji Hyun Yang, Jung Yoon Kim, Jae Hong Seok, Ui Seo Park, Chang Won Choi, Sung Ryul Lee, and Jin Han. “Cryopreservation and Its Clinical Applications.” Integrative Medicine Research 6, no. 1 (2017): 12–18. https://doi.org/10.1016/j.imr.2016.12.001. 
  10. Lemke, Thomas.“Beyond Life and Death. Investigating Cryopreservation Practices in Contemporary Societies,”  Soziologie, 48. No. 4 (April 2019):450-466.
  11. Lorraine. “The Stages of Human Decomposition.” Georgia Clean Services.” Georgia Clean, April 6, 2020. https://www.georgiaclean.com/the-stages-of-human-decomposition/.
  12. Luke Davis. “The Difference between Cryonics and Cryogenics,” August 10, 2020. https://logicface.co.uk/difference-between-cryonics-and-cryogenics/.
  13. Moen, Ole Martin. “The Case for Cryonics.” Journal of Medical Ethics 41, no. 8 (2015): 677–81. https://doi.org/10.1136/medethics-2015-102715. 
  14. Purtill, Corinne. “Fifty Years Frozen: The World’s First Cryonically Preserved Human’s Disturbing Journey to Immortality.” Quartz. Quartz. Accessed May 2, 2021. https://qz.com/883524/fifty-years-frozen-the-worlds-first-cryonically-preserved-humans-disturbing-journey-to-immortality/.
  15. Roxby, Philippa. “What Does Cryopreservation Do to Human Bodies?” BBC News. BBC, November 18, 2016. https://www.bbc.com/news/health-38019392.
  16. Trybek, Tomasz, Artur Kowalik, Stanisław Góźdź, and Aldona Kowalska. “Telomeres and Telomerase in Oncogenesis (Review).” Oncology Letters 20, no. 2 (2020): 1015–27. https://doi.org/10.3892/ol.2020.11659.

Potential Therapeutic Effects of sEH Inhibition in Neurological Disorders

By Nathifa Nasim, Neurobiology, Physiology & Behavior ‘22 

Author’s note: I was recently introduced to this topic and the potential for sEH inhibition in the context of Alzheimer’s while at Dr. Lee-Way Jin’s lab in the MIND Institute. Further research into the topic outside the lab led to the realization of the broader implications of sEH inhibition across numerous neurological disorders through its role in inflammatory pathways. The paper aims to illustrate the therapeutic potential sEH inhibition in neurological disorders through inflammation mediation.

 

Introduction

Neuroinflammation is a symptom of nearly all neurological disorders, and occurs when the immune system of the brain is activated. Microglia, an immune cell in the brain, release inflammatory mediators typically associated with neuroprotection and neurogenesis. However, incessant inflammation can be associated with harmful effects and neurological diseases. Therefore, treatments that target inflammatory processes are of interest to researchers as they have the potential to alleviate numerous disorders. The soluble epoxide hydrolase enzyme (sEH), an enzyme that modulates various physiological processes through the regulation of inflammatory pathways, is one such possible therapeutic agent. Research on the effect of sEH inhibition provides an avenue for treating different neurological disorders such as brain injury, depression, and Alzheimer’s. 

sEH and the Role of EETs

The sEH enzyme is important primarily through its ability to metabolize fatty acids in inflammatory pathways. It is found across mammalian tissues, such as in the brain or the liver, where it is highly expressed. As a member of the epoxide hydrolase family of enzymes, sEH’s C-terminus is responsible for the enzyme’s characteristic epoxide hydrolase activity, converting epoxides by adding a water molecule. The N-terminus, on the other hand, has phosphatase activity instead [2]. Due to the different activities of the two sides of the enzyme, the N-terminal phosphatase domain has been linked to cholesterol metabolism, while the C-terminal domain has been associated with inflammatory and cardiovascular effects.  

The epoxide hydrolase activity of sEH is performed on epoxyeicosatrienoic acids (EETs), epoxy fatty acids that act as lipid messengers in the body. Due to their nature as lipid messengers, EETs have numerous roles, such as being anti-inflammatory messengers and increasing vasodilation. An increase in EET levels provides anti-inflammatory, antihypertensive, neuroprotective, and cardioprotective effects [2]. These protective effects of EET may be especially acute in the brain. For example, the inhibition of the cytochrome p450 enzyme results in an absence of EET, which reduces cerebral blood flow by 30 percent, indicating a critical need for EET in brain circulation [4].

Inhibition of sEH, a negative regulator of EET, increases these protective effects of EETs. The enzyme lowers EET activity via conversion to dihydroxyeicosatrienoic acids (DHETs), which have less anti-inflammatory effects, and can be pro-inflammatory instead. Numerous studies have knocked out or selectively inhibited sEH which stabilizes or increases EET activity because it is no longer being converted into DHET. It is through sEH’s metabolism of EETs that it is linked to numerous diseases and various physiological effects, as EETs are critical in controlling inflammation. Research on the possible therapeutic effects of sEH is therefore primarily focused on increasing fatty acid/EET levels through inhibition of sEH. 

Inflammation in Brain Injury

Neuroinflammation is a critical aspect of traumatic brain injury (TBI), or brain damage via physical injury. TBI results in cerebral inflammation, which activates microglia to produce post-traumatic inflammatory mediators and reactive oxygen species (ROS). While inflammatory mediators function as an immune response after injury, their overproduction after TBI can lead to neural damage, apoptosis (cell death) and/or brain edema (swelling due to the accumulation of fluids). This additional damage occurring in the brain stimulates an increased microglia response, resulting in a positive feedback mechanism [5]. 

Inhibition of this post-traumatic stress-induced inflammation is a common mechanism in treating TBI. Given sEH’s role in inflammation, deletion of sEH via genetic knockouts has been shown to improve these effects. Deletion of sEH decreases the number of activated microglia post-TBI, and as a result, reduces the release of inflammatory mediators, thereby reducing edema, apoptosis, and inflammation [5]. The rise in EET levels associated with sEH inhibition also results in anti-inflammatory effects, and possibly an increase in neurotrophic factors, or growth factors that have a neuroprotective effect [5]. 

sEH and Alzheimer’s

Neuroinflammation is also linked to both the onset and progression of Alzheimer’s. Prolonged activation of glial cells astrocytes and microgliaincrease proinflammatory molecules which lead to a “neurotoxic” environment that aggravates the disease [6]. Alzheimer’s patients have nearly twofold higher sEH levels in the astrocytes, leading to lower EET levels and thus lower anti-inflammatory effects [7]. Given the importance of inflammation in Alzheimer’s, inhibition of sEH should increase EET levels, promoting anti-inflammatory effects crucial to treating the disease. 

One experiment treated 5xFAD mice, transgenic mice that express Alzheimer’s phenotypes, with an sEH inhibitor TPPU. The results indicated that not only did the mice have increased EET levels, the inhibitor had also affected gene expression in the hippocampus by downregulating proinflammatory genes. This effectively “calmed” the overactive immune response correlated with Alzheimer’s. Further testing uncovered that these treated mice had fewer, smaller amyloid plaques, or proteins that are considered to play a critical role in Alzheimer’s and are often regarded as a biomarker for the disease, and fewer microglia surrounding these plaques [6]. As prolonged activation of microglia leads to proinflammatory effects and reduced phagocytosis of amyloid plaques, lowering the immune response of these glial cells could theoretically reverse these inflammatory effects. The reduction effects of EETs on ROS may also be involved, as ROS may contribute to neurotoxicity [7]. These results were achieved with TPPU and verified with another sEH inhibitor; it also aligned with results seen in genetic knockouts of sEH [6]. 

sEH in Peripheral Organs

In addition to the brain, peripheral organs may also play an important role in sEH’s effects on neurological disorders. In addition to astrocytes and other glial cells, sEH is most expressed in the liver. With the liver being the largest gland and responsible for a variety of metabolic activities, hepatic sEH (sEH of the liver) has an influence throughout the body. In a study on major depressive disorder (MDD) by Qin et al., researchers used mice in a chronic mild stress model (CMS), where they were exposed to varying stressors to mimic the effects of depression in an animal model. They found that chronic stress increased sEH levels in mice liver, suggesting hepatic sEH levels are linked to stress and depression [8]. Increased sEH levels in these mice via targeted gene therapy not only led to depressive-like behaviors, but there was also a decrease in proteins that modulate synaptic plasticity, suggesting that sEH parallels the effects of stress at the molecular level. On the other hand, deleting the gene that codes for sEH in the liver induced an antidepressant effect in the CMS mice [8]. In other words, sEH induced depressive-like effects, and inhibiting sEH activity led to antidepressant-like effects, even in stressed model mice. These findings were paralleled in MDD human patients who had lower EET levels compared to the control group, suggesting higher sEH activity in patients with depression, again similar to the Alzheimer’s patients [8]. 

Conclusion

Given the anti-inflammatory abilities of EETs, further development of sEH inhibitors has the capacity to affect the treatment of multiple neurodegenerative diseases which are associated with inflammation. In addition to those mentioned, other neurological conditions and disorders have also exhibited elevated sEH levels, such as Parkinson’s, schizophrenia, and seizures [6]. As these diseases have different pathologies, the cause for elevated sEH levels may vary and is still under research. Nevertheless, the implication of sEH in a variety of diseases expands the therapeutic range of sEH inhibitors.

As seen in the aforementioned MDD study by Qin et al., peripheral organs’ usage of sEH may also be involved with neurological disorders, such as in the case of hepatic sEH. This not only points to a possible liver-brain axis or connection between the two organs, it also opens another avenue of research into the effects of sEH across the body. Diseases such as depression and heart disease have been implicated with sEH in previous studies, for example, and at present, sEH inhibition has been successful in decreasing blood pressure levels [9]. Development and further research into sEH inhibition and effects therefore have the potential to touch numerous conditions and parts of the human body. 

The research regarding Alzheimer’s and TBI both implemented pharmacological sEH inhibitors, in which only the C-terminal hydrolase domain of the enzyme was affected while the N-terminal phosphatase activity was left intact [5,6]. As the N-terminal has been associated with cholesterol metabolism, its role in neurological disorders provides another possible area of study of sEH in treating these disorders. Genetic deletion of the gene that codes for sEH, as seen in the Qin et al. study, deletes both the hydrolase and phosphatase activity of the enzyme. Therefore, studies implementing sEH knockouts may have benefitted from the loss of the phosphatase activity as well as the hydrolase [9]. As a result, further research into different aspects of the enzyme broadens the possibility of its usage and potential. 

 

References:

  1. Wee Yong V. 2010. Inflammation in neurological disorders: a help or a hindrance? Neuroscientist. 16(4):408-20. doi: 10.1177/1073858410371379
  2. Harris TR, Hammock BD. 2013. Soluble epoxide hydrolase: gene structure, expression and deletion. Gene. 526(2):61-74. doi: 10.1016/j.gene.2013.05.008. 
  3. Flores DM, Natalia CS, Regina PA, Regina CC. 2020. Soluble Epoxide Hydrolase and Brain Cholesterol Metabolism. Frontiers in Molecular Neuroscience. 12: 325. doi: 10.3389/fnmol.2019.00325    
  4. Sura P, Sura R, Enayetallah AE, Grant DF. 2008. Distribution and expression of soluble epoxide hydrolase in human brain. J Histochem Cytochem. 56(6):551-9. doi: 10.1369/jhc.2008.950659. 
  5. Hung TH, Shyue SK, Wu CH, Chen CC, Lin CC, Chang CF, Chen SF. 2017. Deletion or inhibition of soluble epoxide hydrolase protects against brain damage and reduces microglia-mediated neuroinflammation in traumatic brain injury. Oncotarget. 8(61):103236-103260. doi: 10.18632/oncotarget.21139.
  6. Ghosh A, Comerota MM, Wan D, Chen F, Propson NE, Hwang SH, Hammock BD, Zheng H. 2020. An epoxide hydrolase inhibitor reduces neuroinflammation in a mouse model of Alzheimer’s disease. Sci Transl Med. 12(573):eabb1206. doi: 10.1126/scitranslmed.abb1206.
  7. Griñán-Ferré C, Codony S, Pujol E, Companys-Alemany J, Corpas R, Sanfeliu C, Pérez B, Loza MI, Brea J, Morisseau C, Hammock BD, Vázquez S, Pallàs M, Galdeano C. 2020. Pharmacological Inhibition of Soluble Epoxide Hydrolase as a New Therapy for Alzheimer’s Disease. Neurotherapeutics 17:1825–1835. doi: 10.1007/s13311-020-00854-1
  8. Qin X, Wu Z, Dong JH, Zeng YN, Xiong WC, Liu C, Wang MY, Zhu MZ, Chen WJ, Zhang Y, Huang QY, Zhu XY. 2019. Liver Soluble Epoxide Hydrolase Regulates Behavioral and Cellular Effects of Chronic Stress. Cell Reports. 29(10): 3223-3234. doi:10.1016/j.celrep.2019.11.006.
  9. Spector AA, Fang X, Snyder GD, Weintraub NL. 2004. Epoxyeicosatrienoic acids (EETs): metabolism and biochemical function. Progress in Lipid Research. 43(1): 55-90. Doi:10.1016/S0163-7827(03)00049-3.