Home » Posts tagged 'cancer'

Tag Archives: cancer

Want to Get Involved In Research?

[su_heading size="15" margin="0"]The BioInnovation Group is an undergraduate-run research organization aimed at increasing undergraduate access to research opportunities. We have many programs ranging from research project teams to skills training (BIG-RT) and Journal Club.

If you are an undergraduate interested in gaining research experience and skills training, check out our website (https://bigucd.com/) to see what programs and opportunities we have to offer. In order to stay up to date on our events and offerings, you can sign up for our newsletter. We look forward to having you join us![/su_heading]

Newest Posts

The Long-term Effects and Implications of Testicular Cancer Treatment

By Michael Guo, Molecular and Medical Microbiology ‘25

Author’s Note: After I returned home for winter break last year, I learned that a friend from my high school was diagnosed with testicular cancer. While I have limited experience with cancer and pathology, I hoped to educate myself about a topic that impacts and will continue to impact the life of one of my friends, and improve my medical literacy as well. This review is primarily based on discussing increased risk factors from testicular cancer and treatment, focusing on resulting secondary malignant neoplasms and cardiovascular disease. 

 

Introduction:

In the past century, the two most prominent causes of death have been heart disease and cancer [1]. Heart disease disproportionately affects older adults, and cancer typically follows a similar pattern. One exception to this is testicular cancer, which in contrast to most types of cancer, occurs most often in 25-45 year old males [2, 3]. Another defining feature of testicular cancer is the extremely high survival rate in most patients, with most cases hovering around 95%. While this high survival rate is admirable, testicular cancer survivors have an increased risk for long-term effects and cancer recurrence from treatment compared to other cancers. Testicular cancer treatment greatly increases long-term effects from treatment compared to other cancer types treatments because survivors are often younger; the testes themselves are relatively exposed organs compared to the heart, lungs, etc, which makes cancer lumps more easily detectable, but also suggests younger survivors could live with long-term effects for multiple decades [4]. 

Caption: A study [10] depicts data collected on ages of TC patients, with a majority of survivors comprising the 25-45 year old age group.

Testicular cancer (TC), in its most simplified definition, is the uncontrolled division of cells (cancerous) in testicle tissues of males. Most treatments of TC consist of surgical removal of cancerous tissues, radiation therapy and chemotherapy, with the latter two encompassing more adverse effects. One such effect is the development of secondary malignant neoplasms (SMN), which are new cancerous cells that occur because of previous radiation therapy and/or chemotherapy [5]. 

The chemical drugs used in chemotherapy can also lead to various issues, including infertility, low testosterone, and various heart complications/diseases [6]. By deepening our understanding of the exact connections between TC treatments and their long-term effects, healthcare workers can greatly decrease mortality and improve the quality of life of testicular cancer survivors. 

Testicular Cancer:

In order to distinguish when various TC treatments are utilized, there must be an understanding of the many forms and stages of TC. Testicular cancer almost always consists of germ cell tumors, which are cancerous cells that form from germ cells, or the sex cells (sperm in males). Non-germ cell tumor TCs are called stromal tumors; these are cancerous cells formed from supportive tissue in the testes, are relatively rare and can almost always be locally removed with surgery. There are two main types of TC germ cell tumors: seminomas and nonseminomas. Seminomas are localized in the testes and can be treated with surgery and subsequent radiation therapy and/or chemotherapy. Non-seminomas usually have spread throughout the body and require more intense chemotherapy, with subsequent surgery when needed depending on the stage/observations [7, 8]. These different forms of TC require different treatments; oftentimes patients receive a combination of multiple kinds. Most TC cases consist of germ cell tumors, have to be treated with some sort of radiotherapy/chemotherapy, and enclose many adverse, long-term side effects. 

One of the most important designations in a cancer diagnosis is the stage. Cancerous tumors are categorized into five stages, with increasing severity from 0-4. Both Stage 0 and Stage 1indicate cancerous cells in one specific area, and are considered early stage cancers. Stage II and III are used when cancerous cells have expanded to surrounding tissues or the lymph nodes. Cancer cells that have spread are most commonly first found in lymph nodes, where developed cancerous cells can congregate from tissue circulation of the lymphatic system and spread to other organs. When cancerous cells spread past the original organ and lymph nodes, it is then classified as Stage IV, and is considered the most advanced stage of cancer [9]. 

Caption: Graphic showing the progression of cancer cell growth within a group of cells in the five cancer stages [7]. 

Statistically, most prognoses for TC patients are encouraging. A committee of German cancer statisticians observed that TCs only make up around 1.6% of cancers in men, and 90% of TC cases are diagnosed Stage I or II. On the other hand, TC also can also be categorized by various forms. Stromal or unknown non-germ cell tumors make up around 7% of all TC, while seminomas make up around 62%, and various non-seminomas around 31% [10]. Combined, the high diagnosis rate within early stages and the fact that the majority of cancer cases are localized result in close to a 95% 5-year survival rate, meaning a high number of patients survive for at least 5 years after diagnosis. Not to be overlooked however, is the impact of newly developed treatments of TC in the last 30 years. 

Treatment and Side Effects:

Most of the adverse effects experienced from testicular cancer survivors are derived from the harsh treatment options available, rather than the cancer itself. So far, attempting to balance long-term effects from medication with sufficient treatment to remove the cancer cells has been proven to be the most successful course of medical care. All forms of TC can utilize surgical removal of tumors as a treatment option. When diagnosed early, surgery is almost always used to remove a testicle to prevent cancerous tissues from spreading. Surgical removal has little to no long-term side effects outside of normal surgical recovery standards. 

More commonly seen with non-seminomas or more advanced stage TCs (stage III/stage IV) is the use of chemotherapy and radiation therapy. While chemotherapy uses specific drugs or drug combinations to target and kill rapidly dividing cells, radiation therapy uses focused radiation to break apart cancer cell DNA, which prevents division [8]. However, chemotherapy and radiation therapy come with different side effects. In chemotherapy of TC specifically, almost all treatments contain bleomycin, etoposide and cisplatin. This combination causes especially harsh long term side effects, including infertility, low testosterone, heart diseases and development of secondary cancers [2, 11]. In recent statistical studies tracking TC survivors who have undergone chemotherapy or radiation therapy (or a combination of both), researchers have noticed chemotherapy can increase the risk for SMNs and cardiovascular disease (CVD), while radiation therapy greatly increases the risk for SMNs but not necessarily CVD. 

Caption: Graph visualization of cancer risk – blue line is depicting the risk of all cancers after a seminomatous TC diagnosis, compared to the green line representing general population risk of a seminomatous cancer. The red line depicts risk of all cancers after a non-seminomatous TC diagnosis, compared to the general population risk of non-seminomatous TC. 

Secondary Malignant Neoplasms:

Healthcare professionals and researchers have long known that radiation and certain chemicals are able to cause cancer. Secondary malignant neoplasms (SMNs), as they have been termed, are when cancerous cells form outside of the original cancerous organ tissues, because of chemotherapy and/or radiation therapy. In a study published by Bokemeyer and Schmoll, research has suggested, “Radiotherapy is associated with a two- to threefold increased risk for secondary solid tumors” [4]. More recent studies have shown that patients exposed to higher amounts of radiation during treatment are more likely to develop SMNs than patients with lower amounts of exposure, since healthy tissues near cancer cells are exposed to high amounts of radiation at the time of treatment as well [4, 12]. Incidences of SMNs in TC survivors are especially noticeable and impactful; the younger age elicits more time for secondary cancers to occur post-treatment. While it seems that little can be done to combat the development of SMNs caused by radiation therapy during treatment, changes have been made in recent years. When doctors administer treatment of TC, if requiring radiation therapy, they aim to use minimal doses of radiation, and have completely stopped radiation therapy concentrated in the chest area in the past several years [13, 14]. While follow up appointments had been established before the long term effects of TC treatment have been quantified, follow up appointments are now taken more seriously and are being continued for a longer period of time following treatment, with a larger emphasis on secondary cancers.

Chemotherapy has also seen correlation with development of SMNs after initial treatment. Two of the drugs used in TC treatment, etoposide and cisplatin, have caused secondary malignancies to arise even in treatment of cancers other than TC. Researchers have come to agree that the impact of chemotherapy is less than radiation therapy in terms of development of SMNs. Decades old research has confirmed the correlation between complications following treatment and >4 cycles of cisplatin-based therapy [15]. Cisplatin in TC treatment has specifically been known to lead to increased risk of leukemia and myelodysplastic syndrome, both of which are related to complications to blood-forming cells in bone marrow. In another study, researchers equated the effects of chemotherapy and radiation therapy on SMNs and CVD to be similar to smoking, a well known carcinogen (cancer causing agent) [13, 14]. While the individual effects of both chemotherapy and radiation therapy regarding the development of SMNs have been documented, there have been few studies that differentiate the effects of each when both treatment options are combined. Future research surveying older survivors with more long-term effects could be the key to optimizing TC treatment when decreasing SMNs.  

Cardiovascular Disease:

While both chemotherapy and radiation therapy have documented effects of SMNs, radiation therapy has not been connected to greater risk of CVD. However, among the various negative effects of chemotherapy, CVD has been one of the most important causes of premature death in TC survivors.  In chemotherapy, cisplatin and bleomycin are heavy metals that with repetitive use, can build up in and weaken heart muscles, as well as cause hearing impairment and infertility [15, 16]. While the effects of bleomycin are similar to other heavy metals used in chemotherapy, cisplatin specifically damages mitochondrial or nuclear DNA of certain cells. This causes mammalian cells using ATP respiration in the mitochondria to create reactive oxygen species (ROS). ROS are unstable molecules formed from O2 that can then cause damage or cell death when reacted [17]. With repeated chemotherapy treatment, cisplatin can build up in certain areas, and is often the cause of side effects such as hearing loss (cochlea), hair loss (hair follicles), and CVD (inner linings of arteries). However, specifically why cisplatin builds up in certain tissues is currently unknown [11]. 

Cases of CVD from cancer treatment can especially be seen in TC because of the younger age of TC patients. Surviving TC at a mean age of 37 could mean living with an increased risk of CVD for upwards of 40 years. Researchers have attempted to substitute cisplatin with a similar compound called carboplatin in hopes of decreasing the known long-term effects. However, carboplatin has never produced efficient cure rates even while decreasing nerve and hearing damage [18, 15]. As stated before, it is unclear whether the long-term effects of cisplatin-based chemotherapy outweigh the monumental success rate of treatment of TC, simply because of the lack of data available from long-term survivors. Eventual data of TC survivors could help determine longer-term impacts of cisplatin in chemotherapy, and help with discussions regarding a need for finding a substitution for cisplatin.

Conclusion:

In regards to the post-diagnosis 5 year survival rate of testicular cancer patients, testicular cancer is one of the most survivable cancer types. However, the abnormally young age of TC patients allows us to more easily see the long-term effects of more advanced stage cancer treatment. Both radiation therapy and chemotherapy have been documented to increase risk for secondary malignant neoplasms, with chemotherapy also leading to a large variety of complications, including infertility, low testosterone, and cardiovascular diseases. While certain studies have shown such adverse effects in TC treatment, not enough data has been gathered from treated TC patients who have lived through a larger period of time since treatment. With future studies, researchers could discern the need for alternative treatments to testicular cancer, or methods to prevent the harmful effects of current testicular cancer treatment.

 

References:

  1. Leading Causes of Death. (2022, January 13). Centers for Disease Control and Prevention. https://www.cdc.gov/nchs/fastats/leading-causes-of-death
  2. Khan, O., & Protheroe, A. (2007). Testis Cancer. Postgraduate Medical Journal. Volume 83 (Issue: 984). https://doi.org/10.1136/pgmj.2007.057992
  3. Toni, L. D., ŠAbovic, I., Cosci, I., Ghezzi, M., Foresta, C., & Garolla, A. (2019). Testicular Cancer: Genes, Environment, Hormones. Frontiers in Endocrinology. https://doi.org/10.3389/fendo.2019.00408
  4. Bokemeyer, C., & Schmoll, H. J. (1995). Treatment of testicular cancer and the development of secondary malignancies. Journal of Clinical Oncology. Volume 13 (Issue: 1) https://doi.org/10.1200/jco.1995.13.1.283
  5. Virginia Cancer Institute. (n.d.). Secondary Malignancies. Retrieved March 7, 2022, from https://www.vacancer.com/diagnosis-and-treatment/side-effects-of-cancer/secondary-malignancies/
  6. Travis, L. B., Beard, C., Allan, J. M., Dahl, A. A., Feldman, D. R., Oldenburg, J., Daugaard, G., Kelly, J. L., Dolan, M. E., Hannigan, R., Constine, L. S., Oeffinger, K. C., Okunieff, P., Armstrong, G., Wiljer, D., Miller, R. C., Gietema, J. A., Leeuwen, F. E., Williams, J. P., . . . Fossa, S. D. (2010). Testicular Cancer Survivorship: Research Strategies and Recommendations. Journal of the National Cancer Institute. Volume 102 (Issue: 15). https://doi.org/10.1093/jnci/djq216
  7. Johns Hopkins Medicine. (n.d.). Types of Testicular Cancer. Retrieved March 7, 2022, from https://www.hopkinsmedicine.org/health/conditions-and-diseases/testicular-cancer/types-of-testicular-cancer
  8. The American Cancer Society medical and editorial content team. (2019, September 4). Treatment Options for Testicular Cancer, by Type and Stage. American Cancer Society. Retrieved March 7, 2022, from https://www.cancer.org/cancer/testicular-cancer/treating/by-stage.html
  9. Langmaid, S. (2016, November 28). Stages of Cancer. WebMD. Retrieved March 7, 2022, from https://www.webmd.com/cancer/cancer-stages
  10. Association of Population-based Cancer Registries in Germany & German Centre for Cancer Registry Data at the Robert Koch Institute. (2021, April 26). Testicular cancer. Zentrum Für Krebsregisterdaten. Retrieved March 7, 2022, from https://www.krebsdaten.de/Krebs/EN/Content/Cancer_sites/Testicular_cancer/testicular_cancer_node.html
  11. Murphy, M. P. (2009, January 1). How mitochondria produce reactive oxygen species. Biochemical Journal. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2605959/
  12. Curreri, S. A., Fung, C., & Beard, C. J. (2015). Secondary malignant neoplasms in testicular cancer survivors. Urologic Oncology: Seminars and Original Investigations. https://doi.org/10.1016/j.urolonc.2015.05.002
  13. The American Cancer Society medical and editorial content team. (2020, June 9). Second Cancers After Testicular Cancer. American Cancer Society. Retrieved March 7, 2022, from https://www.cancer.org/cancer/testicular-cancer/after-treatment/second-cancers.html
  14. van den Belt-Dusebout, A. W., de Wit, R., Gietema, J. A., Horenblas, S., Louwman, M. W. J., Ribot, J. G., Hoekstra, H. J., Ouwens, G. M., Aleman, B. M. P., & van Leeuwen, F. E. (2006). Treatment-specific risks of second malignancies and cardiovascular disease in 5-year survivors of testicular cancer. Journal of Clinical Oncology. Volume 25 (Issue: 28) https://doi.org/10.1200/jco.2006.10.5296
  15. Moul, J. W., Robertson, J. E., George, S. L., Paulson, D. F., & Walther, P. J. (1989). Complications of Therapy for Testicular Cancer. The Journal of Urology. Volume 142 (Issue: 6) https://doi.org/10.1016/S0022-5347(17)39135-8
  16. Travis, L. B., Fosså, S. D., Schonfeld, S. J., McMaster, M. L., Lynch, C. F., Storm, H., Hall, P., Holowaty, E., Andersen, A., Pukkala, E., Andersson, M., Kaijser, M., Gospodarowicz, M., Joensuu, T., Cohen, R. J., Boice, J. D., Dores, G. M., & Gilbert, E. S. (2005). Article Navigation Second Cancers Among 40 576 Testicular Cancer Patients: Focus on Long-term Survivors. Journal of the National Cancer Institute. https://doi.org/10.1093/jnci/dji278
  17. Breglio, A. M, et al. (2017, November 21). Cisplatin is retained in the cochlea indefinitely following chemotherapy. Nature Communications. https://www.nature.com/articles/s41467-017-01837-1?error=cookies_not_supported&code=95f5244f-996e-42ef-845e-9ca9f624b375
  18. Haugnes, H. S., Bosl, G. J., Boer, H., Gietema, J. A., Brydøy, M., Oldenburg, J., Dahl, A. A., Bremnes, R. M., & Fosså, S. D. (2012). Long-Term and Late Effects of Germ Cell Testicular Cancer Treatment and Implications for Follow-Up. Journal of Clinical Oncology. Volume 97 (Issue: 18) https://doi.org/10.1200/JCO.2012.43.4431
  19. Baird, D. C., Meyers, G. J., Darnall, C. R., & Hu, J. S. (2018). Testicular Cancer: Diagnosis and Treatment. American Family Physician. https://www.aafp.org/afp/2018/0215/p261.html
  20. Smith, A. (2019, December). The Long Haul: Facing the Long-Term Side Effects of Testicular Cancer. Cure Media. Retrieved March 7, 2022, from https://www.curetoday.com/view/the-long-haul-facing-the-long-term-side-effects-of-testicular-cancer

650-million year old enzyme used to target cell death in cancer cells

By Vishwanath Prathikanti, Anthropology, ‘23

Author’s note: As someone studying Anthropology at Davis, I often see my friends confused when I tell them how much of my studies consist of biology and chemistry. It’s a fairly common conception that Anthropologists mainly study human culture, and while cultural anthropology is an important aspect of the field, it is still only a part of it. When I heard about how our ancestors’ enzymes are being used to advance our knowledge of cancer, I knew it could be an opportunity to change the perception of Anthropology among students.

 

Most people have a general understanding of how cancer works: it occurs when apoptosis, or cell death, does not occur in cells. These cells start to propagate, and then aggregate into tumors. The tumors can spread across the body and lead to varying health complications depending on if they are benign (isolated to a part of the body) or malignant (spread to other areas). Naturally, one possible solution would be to fix the part in cancer cells that prevent them from properly dying. So how does a cell die?

Apoptosis hinges on enzymes called effector caspases, which deactivate proteins that carry out normal cellular processes, activate nucleases and kinases that are used to break down DNA, and disassemble various components of the cell [1]. So to cause cell death in cancer cells, scientists would need to activate caspases. Activating these caspases would affect all cells, not just cancerous ones. The challenge scientists face is activating caspases in cancer cells without impacting healthy surrounding cells. Unfortunately, to activate effector caspases in just cancerous cells requires an intimate knowledge of the different proteins that comprise the caspase family, something the scientific community lacks.

In an effort to learn more about the structure of caspases, Suman Shrestha and Allan C. Clark from the University of Texas at Arlington decided to look to the past rather than just the present. Specifically, they wanted to analyze the folding mechanisms and structure of effector caspases and construct a picture of how they operated for our ancestors [2]. 

A recent trend in evolutionary biology and physical anthropology has been comparing various proteins and their folding structures across other organisms today and reconstructing what these proteins looked like for our ancestors [3]. This is carried out via a computer program that generates a phylogenetic tree of a protein family, a process known as ancestral sequence reconstruction (ASR). After the phylogeny is generated, the ASR program will statistically infer where certain proteins changed or emerged in the tree [4]. This is done by comparing binding sites in proteins. The program will identify various binding sites that are described as “ambiguous sites,” when a node (branching point in a phylogenetic tree) has a <70% probability of being accurate [5]. In caspases, this ambiguity is generally due to one of two possibilities. One is that there is nearly a 50/50 chance an identified ancestral protein led to the extant version, or another identified protein. The second possibility is that the binding site has a high mutation rate, lowering the probability that it has been characterized correctly [5]. As for the other sites, different ASR programs have slightly different levels of accuracy, but the most prominently used ones have around a 90-93% chance that every non-ambiguous site is accurate [8]. Finally, using protein sequences of the organisms alive today and the phylogeny that depicts their ancestors, the ASR program can present the most likely sequence of the protein at a particular node in the phylogeny [6].

 

Caption: The ASR process will generate the phylogeny (C) as well as the sequences and order of sequences provided those of extant species are provided to the program (D) [4].

 

Using ASR, Shrestha and Clark discovered effector caspases first evolved in a common ancestor more than 650 million years ago (mya) when microorganisms and sponges dominated life. While ASR can’t identify the species of the organism, it can generate the predicted sequences of these ancient caspases. This is all they need to recreate these proteins and better understand how these caspases function under healthy conditions versus cancerous ones [2, 7]. 

Among the 12 proteins that make up the caspase family, Shrestha and Clark decided to reconstruct the ancestor of three specific ones: caspase-3, -6, and -7 [7]. These three caspases were chosen because they are specifically responsible for cell death, whereas the others are linked to inflammation or activation of other enzymes [7, 8]. After sequencing the proteins, Shrestha and Clark were able to identify changes in the folding structures and sequences that could activate effector caspases in tumor cells without triggering cell death in healthy cells.

Specifically, they confirmed two folding precursors in the creation of caspase-6 and -7 proteins. While these precursors had already been discovered in caspase-3, the discovery was significant in understanding how the caspases worked in a normal cell and how they were altered in a cancer cell. Shrestha and Clark noted mutations that slow the formation of these precursors, which led to the production of caspases greatly slowing down, causing a cell to not die when it needs to [2]. Understanding this regulatory process may allow researchers to discover a way to reactivate caspase production in cancer cells.

The vast majority of data collected in the study was information on how stable these proteins are and where they evolved since our common ancestor 650 mya. They found that caspase-6 was the most stable out of the three, and at lower pH’s, caspase-6 is the only one that does not unfold irreversibly [2]. This suggests a more specialized role for caspase-6 compared to 3 and 7, and the data may be useful for the adaptation of cancer-targeting drugs. For example, if a cancer aggregate is in a low pH environment of the body such as the stomach, a cancer-targeting drug may utilize caspase-6 specifically to activate programmed cell death.

While the results are still fairly recent and have not had adequate time to be implemented into a treatment, Morteza Khaledi, dean of the College of Science at the University of Texas at Arlington, was incredibly excited about the results. In a press statement to the University of Texas at Arlington, he announced that the research had yielded “vital information about the essential building blocks for healthy human bodies” and that the knowledge gained from the study will be seen as “another weapon in our fight against cancer” [7].

 

References:

  1. https://www.sciencedirect.com/topics/medicine-and-dentistry/effector-caspase 
  2. https://www.sciencedirect.com/science/article/pii/S0021925821010528?via%3Dihub 
  3. https://www.nature.com/articles/nrg3540 
  4. https://onlinelibrary.wiley.com/doi/10.1002/bip.23086 
  5. https://www.sciencedaily.com/releases/2022/01/220112094022.htm 
  6. https://link.springer.com/chapter/10.1007/978-1-4614-3229-6_4?utm_source=getftr&utm_medium=getftr&utm_campaign=getftr_pilot 
  7. https://portlandpress.com/biochemj/article/476/22/3475/221018/Resurrection-of-ancestral-effector-caspases 
  8. https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.0020069#:~:text=The%20ML%20method%20was%20the,average%20accuracy%20is%200.4%25
  9. https://www.sciencedirect.com/science/article/pii/S2213020916302336

The Scientific Cost of Progression: CAR-T Cell Therapy

By Picasso Vasquez, Genetics and Genomics ‘20

Author’s Note: One of the main goals for my upper division UWP class was to write about a recent scientific discovery. I decided to write about CAR-T cell therapy because this summer I interned at a pharmaceutical company and worked on a project that involved using machine learning to optimize the CAR-T manufacturing process. I think readers would benefit from this article because it talks about a recent development in cancer therapy.

 

“There’s no precedent for this in cancer medicine.” Dr. Carl June is the director of the Center for Cellular Immunotherapies and the director of the Parker Institute for Cancer Immunotherapy at the University of Pennsylvania. June and his colleagues were the first to use CAR-T, which has since revolutionized personal cancer immunotherapy [1]. “They were like modern-day Lazarus cases,” said Dr. June, referencing the resurrection of Saint Lazarus in the Gospel of John and how it parallels the first two patients to receive CAR-T.  CAR-T, or chimeric antigen receptor T-cell, is a novel cancer immunotherapy that uses a person’s own immune system to fight off cancerous cells existing within their body [1].

Last summer, I had the opportunity to venture across the country from Davis, California, to Springhouse, Pennsylvania, where I worked for 12 weeks as a computational biologist. One of the projects I worked on was using machine learning models to improve upon the manufacturing process of CAR-T, with the goal of reducing the cost of the therapy. The manufacturing process begins when T-cells are collected from the hospitalized patient through a process called leukapheresis. In this process, the T-cells are frozen and shipped to the manufacturing facility, such as the one I worked at this summer, where they are then grown up in large bioreactors. On day three, the T-cells are genetically engineered to be selective towards the patient’s cancer by the addition of the chimeric antigen receptor; this process turns the T-cells into CAR-T cells [2]. For the next seven days, the bioengineered T-cells continue to grow and multiply in the bioreactor. On day 10, the T-cells are frozen and shipped back to the hospital where they are injected back into the patient. Over the 10 days prior to receiving the CAR-T cells, the patient is given chemotherapy to prepare their body for inoculation of the immunotherapy [2]. This whole process is very expensive and as Dr. June put it in his TedMed talk, “it can cost up to 150,000 dollars to make the CAR-T cells for each patient.” But the cost does not stop there; when you include the cost of treating other complications, the cost “can reach one million dollars per patient” [1].

The biggest problem with fighting cancer is that cancer cells are the result of normal cells in your body gone wrong. Because cancer cells look so similar to the normal cells, the human body’s natural immune system, which consists of B and T-cells, is unable to discern the difference between them and will be unable to fight off the cancer. The concept underlying CAR-T is to isolate a patient’s T-cells and genetically engineer them to express a protein, called a receptor, that can directly recognize and target the cancer cells [2]. The inclusion of the genetically modified receptor allows the newly created CAR-T cells to bind cancer cells by finding the conjugate antigen to the newly added receptor. Once the bond between receptor and antigen has been formed, the CAR-T cells become cytotoxic and release small molecules that signal the cancer cell to begin apoptosis [3]. Although there has always been drugs that help your body’s T-cells fight cancer, CAR-T breaks the mold by showing great efficacy and selectivity. Dr. June stated “27 out of 30 patients, the first 30 we treated, or 90 percent, had a complete remission after CAR-T cells.” He then goes on to say, “companies often declare success in a cancer trial if 15 percent of the patients had a complete response rate” [1].

As amazing as the results of CAR-T have been, this wonderful success did not happen overnight. According to Dr. June, “CAR T-cell therapies came to us after a 30-year journey, along with a road full of setbacks and surprises.” One of these setbacks is the side effects that result from the delivery of CAR-T cells. When T-cells find their corresponding antigen, in this case the receptor on the cancer cells, they begin to multiply and proliferate at very high levels. For patients who have received the therapy, this is a good sign because the increase in T-cells indicates that the therapy is working. When T-cells rapidly proliferate, they produce molecules called cytokines. Cytokines are small signaling proteins that guide other cells around them on what to do. During CAR-T, the T cells rapidly produce a cytokine called IL-6, or interleukin-6, which induces inflammation, fever, and even organ failure when produced in high amounts [3].

According to Dr. June, the first patient to receive CAR-T had “weeks to live and … already paid for his funeral.”  When he was infused with CAR-T, the patient had a high fever and fell comatose for 28 days [1]. When he awoke from his coma, he was examined by doctors and they found that his leukemia had been completely eliminated from his body, meaning that CAR-T had worked. Dr. June reported that “the CAR-T cells had attacked the leukemia … and had dissolved between 2.9 and 7.7 pounds of tumor” [1].

Although the first patients had outstanding success, the doctors still did not know what caused the fevers and organ failures. It was not until the first child to receive CAR-T went through the treatment did they discover the cause of the adverse reaction. Emily Whitehead, at six years old, was the first child to be enrolled in the CAR-T clinical trial [1]. Emily was diagnosed with acute lymphoblastic leukemia (ALL), an advanced, incurable form of leukemia. After she received the infusion of CAR-T, she experienced the same symptoms of the prior patient. “By day three, she was comatose and on life support for kidney failure, lung failure, and coma. Her fever was as high as 106 degrees Fahrenheit for three days. And we didn’t know what was causing those fevers” [1]. While running tests on Emily, the doctors found that there was an upregulation of IL-6 in her blood. Dr. June suggested that they administer Tocilizumab to combat increased IL-6 levels. After contacting Emily’s parents and the review board, Emily was given Tocilizumab and “Within hours after treatment with Tocilizumab, Emily began to improve very rapidly. Twenty-three days after her treatment, she was declared cancer-free. And today, she’s 12 years old and still in remission” [1]. Currently, two versions of CAR-T have been approved by the FDA, Yescarta and Kymriah, which treat diffuse large B-cell lymphoma (DLBCL) and acute lymphoblastic leukemia (ALL) respectively [1].       

The whole process is very stressful and time sensitive. This long manufacturing task results in the million-dollar price tag on CAR-T and is why only patients in the worst medical states can receive CAR-T [1]. However, as Dr. June states, “the cost of failure is even worse.” Despite the financial cost and difficult manufacturing process, CAR-T has elevated cancer therapy to a new level and set a new standard of care. However, there is still much work to be done. The current CAR-T drugs have only been shown to be effective against liquid based cancers such as lymphomas and non-effective against solid tumor cancers [4]. Regardless, research into improving the process of CAR-T continues to be done both at the academic level and the industrial level.

 

References:

  1. June, Carl. “A ‘living drug’ that could change the way we treat cancer.” TEDMED, Nov. 2018, ted.com/talks/carl_june_a_living_drug_that_could_change_the_way_we_treat_cancer.
  2. Tyagarajan S, Spencer T, Smith J. 2019. Optimizing CAR-T Cell Manufacturing Processes during Pivotal Clinical Trials. Mol Ther. 16: 136-144.
  3. Maude SL, Laetch TW, Buechner J, et al. 2018. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N Engl J Med. 378: 439-448.
  4. O’Rourke DM, Nasrallah MP, Desai A, et al. 2017. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med. 9: 399.

The Effect of Trastuzumab on HER2-Signaling in Breast Cancers to Induce Cardiotoxicity

By Karissa Cruz, B.S. Biochemistry and Molecular Biology, Spring ‘19

Author’s Note: I wrote this piece as part of my UWP 104F assignments and ended up becoming really interested in what I wrote about. I specifically chose this topic because I think breast cancer is a smart, complex disease, and the treatment can change day-to-day. I wanted to shed light on a widely accepted breast cancer treatment that is now under review after discovering that it can cause cardiac dysfunction.

(more…)

New Drug “Sponge” Absorbs Chemo Side Effects

By Brooke B., Neurology, Physiology, and Behavior, ‘22

Author’s Note: I heard about this device on the news, and I was immediately intrigued by the concept. I decided to research it further, upon which I was surprised how logical and efficient the device worked with such substantial results. I wanted to share what I believe to be a huge breakthrough in cancer research.

(more…)

Monocarboxylate Transporter 1’s Facilitation of Cancer Cell Activity

By Rachel Hull, Biochemistry and Molecular Biology, ’19

Author’s note

I originally wrote this paper for my Biological Systems class, the instructor of which was interested in researching the physiological role of monocarboxylate transporter 1 (MCT1). He instructed his students to write an essay exploring this role in any way they wanted, and I chose to focus on the link between MCT1 and cancer. I enjoyed sifting through multiple strands of evidence for the reasons behind this link — strands that oftentimes were not in agreement with one another.

(more…)

Cell-free DNA Testing as the Next Generation of Cancer Screening

By: Anna Kirillova, Cell Biology, ‘19

 

Author’s Note:

“This article was brought to my attention in my Human Genetics class (MCB 162) when we were discussing novel methodologies for diagnosis of fetal trisomies (Down Syndrome). The purpose of this review is to highlight how basic biology can translate into significant advancements in disease diagnosis. I hope that the reader will be intrigued by the new genetic technologies and will proceed onto reading the original research article using this review as a guide.”

(more…)

Can Polio Cure Cancer?

By Briga Mullin, Biochemistry and Molecular Biology, ’15

The human body’s immune system has been developed to successfully battle foreign invaders including bacteria, parasites, and viruses. Immunotherapy is the idea that the power of the immune system can be utilized against diseases such as cancer. Typically, the immune system does not harm the body’s own cells, preventing it from being extremely effective against cancer. However with different medical interventions to strengthen the body’s immune response, it is possible to get an effective treatment (Cancer Immunotherapy 2015).

A unique and exciting branch of immunotherapy involves oncolytic viruses, genetically modified viruses that are used to infect tumor cells and fight cancer (Vile, Ando, and Kirn 2002). One example of an oncolytic virus is Oncolytic Polio/Rhinovirus Recombinant (PVS-RIPO), a genetic combination of poliovirus and a strain of the common cold. (more…)

A Breakthrough in Breast Cancer Treatment

 Exciting, new gene therapy treatments for breast cancer are on the verge of making a breakthrough. With proper funding, these procedures could reduce the need for the surgical removal of organs.

By Rayan Kaakati, Neurobiology, Physiology, and Behavior

Being born female automatically enters one in a game of Russian roulette: About 1 in 8 women will develop invasive breast cancer over the course of their lifetime; for American women, breast cancer is the second leading cause of death (U.S. Breast Cancer Statistics).

Breast cancer is a disease that starts in the tissues of the breast and is statistically fatal for one in thirty-two women (Breast Cancer Facts). Many women, throughout recorded history, have succumbed to this malignant disease. Rapid advancements in research have been very promising for cancer cell-targeting medications and for gene modification techniques.

Medicine in the twenty-first century is still resorting to what the ancient Chinese and Arab doctors used to practice: “If cancerous, cut it out if possible,” or in current-day terms, order a “lumpectomy” or a “mastectomy” (if the entire breast is to be removed). In recent years, a toxic chemo “smoothie” and an intensive radiation regimen have been added, coupled with hormone therapy.  While these medical procedures are credited with saving thousands of lives, they are still primitive compared to current, promising research works.

(more…)

From Embryo to Tumor: the widespread applications of Epithelial-Mesenchymal Transition

By Briga Mullin, Biochemistry and Molecular Biology, ’15

What do a smoker, a two week old embryo, a child with a broken wrist, and a metastatic tumor all have in common? While these are a diverse group of conditions, they all have cells that are experiencing the same process known as epithelial-mesenchymal transition (EMT). Mesenchymal cells are non-polarized, mobile, invasive, and their main function is to secrete extracellular  matrix. In contrast, epithelial cells form our skin and the linings of our internal organs. They are normally polarized which means they have a directional structure and are uniformly oriented and are attached to a membrane to form a layer of epithelial tissue.  Under certain conditions an EMT will occur and epithelial cells will change  their transcription patterns, produce new proteins, destroy the basal membrane they are attached to, and totally convert their phenotype to become motile  mesenchymal cells.  EMT can be triggered by a variety of conditions and can yield very beneficial or extremely detrimental results depending on the circumstances. (more…)