Home » Posts tagged 'climate'

Tag Archives: climate

Want to Get Involved In Research?

[su_heading size="15" margin="0"]The BioInnovation Group is an undergraduate-run research organization aimed at increasing undergraduate access to research opportunities. We have many programs ranging from research project teams to skills training (BIG-RT) and Journal Club.

If you are an undergraduate interested in gaining research experience and skills training, check out our website (https://bigucd.com/) to see what programs and opportunities we have to offer. In order to stay up to date on our events and offerings, you can sign up for our newsletter. We look forward to having you join us![/su_heading]

Newest Posts

A Warmer World Leading to a Health Decline

By Abigail Lin, Biological Sciences.

INTRODUCTION

Rising temperatures due to global climate change cause several detrimental impacts on the world around us. This paper will analyze the consequences of climate change, specifically temperature changes, within California. Livelihoods of farmers and fishermen, distribution of disease, and fire intensity are examples of how California is affected by this crisis. Climate change in California is especially visible because California dominates the nation’s fruit and nut production, two water-intensive crops. The state’s reliance on large quantities of water to fuel its agricultural system makes it particularly susceptible to drought. Proliferation of detrimental disease vectors, loss of beneficial crops, and elevated levels of dryness imply a complex interaction between California ecosystems and climate change. 

Crops

There are many farmers and agricultural workers in California impacted by changing climates, as the state is a major agricultural hotspot. Two-thirds of the nation’s fruits and over one-third of the nation’s vegetables are produced in California [1]. Crops such as apricots, peaches, plums, and walnuts are projected to be unable to grow in 90% or more of the Central Valley by the end of the century because of the increase of disease, pests, and weeds that accompany rising temperatures [1]. 

Figure 1. Projection of crop failure by the end of the century. Heat increases diseases, pests, and weeds. Plum, apricot, peach and walnut crops will be unable to grow in 90% of Central Valley as a result.

Crop yields significantly decrease when heat sensitive plants are not grown in cool enough conditions. Fruits and nuts require chill hours, when the temperature is between 32 and 45 degrees Fahrenheit, to ensure adequate reproduction and development [2]. However, with increasing temperatures, crops are receiving less chill hours during the winter. California grows 98% of the country’s pistachios, but changes in chill hours have affected fertilization [3]. A study found that pistachios need 700 chill hours each winter, yet there have been less than 500 chill hours over the past four years combined [1]. As a result, in 2015, 70% of pistachio shells were missing the kernel (the edible part of the nut) that should have been inside [3]. 

Repeated crop failures have also left farmers mentally taxed. Evidence suggests that suicide rates for farmers are already rising in response to farm debt that accumulates in response to poor crop yields [4]. Not only is people’s financial well-being threatened by climate change, but so is their mental health. Mental stress threatens to rise as climates warm around the world, causing economic loss and upheaving agricultural careers. 

Crab Fisheries

Crab fisheries and fishers in California are also negatively impacted by the rise in temperatures. Warming oceans have led to an uncontrollable growth of algal blooms, which contaminates crab meat with domoic acid, a potent neurotoxin that causes seizures and memory loss [5]. The spread of this toxin has forced many fisheries to close. California fishers lost over half the crabs they regularly catch per season, and qualified for more than 25 million dollars of federal disaster relief, during 2015 to 2016 [5]. In response to financial loss, fishers adapted by catching seafood species other than crab, moved to locations where algal blooms have not contaminated their catch, or in the worst case, stopped fishing altogether [5]. California crab fishers’ careers have already been dramatically altered by global warming, and the amount of algal blooms will only continue to increase if warming continues. 

Disease

Temperature plays a major role in the prevalence of infectious diseases because it increases the activity, growth, development, and reproduction of disease vectors, living organisms that carry infectious agents and transmit them to other organisms. It is predicted that warm, humid climates will allow bacteria and viruses, mosquitoes, flies, and rats (all common disease vectors) to thrive [6]. Most animal disease vectors are r-selected, meaning they put little parental investment into individual offspring, but produce many. Warm temperatures allow r-selected species to grow quickly and reproduce often. However, warm temperatures speed up biochemical reactions and are very energy demanding on organism metabolism [7]. In response, disease vector ectotherms, organisms requiring external sources of heat for controlling body temperature, have successfully adapted to changing temperatures. These organisms thermoregulate, or carry out actions that maintain body temperature [7]. Behavioral thermoregulation has shifted the geographical distribution of infectious diseases as disease vectors move to the warm environments that they favor [7]. 

Initial models about the distribution and prevalence of disease suggested a net increase of the geographical range of diseases, while more recent models suggest a shift in disease distribution [7]. Recent models recognize that vector species have upper and lower temperature limits that affect disease distribution [7]. It is estimated that by 2050, there will be 23 million more cases of malaria at higher latitudes, where previously infections were nonexistent, but 25 million less cases of malaria at lower latitudes, where previously malaria proliferated rapidly through populations, because the conditions necessary for malaria transmission will shift [7]. 

Figure 2. Shift of malaria disease distribution by 2050. Higher latitudes will have 23 million more cases of malaria while lower latitudes will have 25 million less cases. Although habitat suitability changed, there is little net change in malaria cases. 

Cases of Coccidioidomycosis (Valley fever), an infectious disease spread from inhaling Coccidioides fungal spores, have recently reached record highs in California [8]. Valley fever is especially prevalent in areas experiencing fluctuating climates, vacillating between extreme drought and high precipitation [8]. After studying 81,000 cases collected over 20 years, researchers identified that major droughts have a causal relationship with increasing Coccidioidomycosis transmission rates [8]. Initially, drought will suppress disease transmission because it prevents proliferation of the Coccidioides fungi. However, transmission rebounds in the years following drought because competing bacteria die off in high heat [8]. Fungi have a number of traits that make them more tolerable to drought compared to bacteria including osmolytes for maintaining cell volume, thick cell walls to mitigate water loss, melanin which aids in thermoregulation, and hyphae that extend throughout the soil to forage for water [9]. Disease spikes are seen after drought, such as the wet season between 2016 and 2017, which had about 2,500 more cases of Valley fever in comparison to the previous year. [8]. 

The role of rising temperatures in increasing Valley fever cases is evident in Kern County, one of the hottest and driest regions of California. Kern Country has the highest Valley fever incident rates in California; 3,390 cases occurred in a 47-month drought from 2012 to 2016 [8]. Kern County has many cases of Valley fever because of its drought-like conditions. As climate change pushes areas throughout California that are usually cool and wet year-round into alternating dry and wet weather conditions, Valley fever cases are projected to increase. 

Fires

Climate change is also associated with an increase in fire season intensity. The Western United States experienced three years of massive wildfires from 2020 to 2022, with each year burning more than 1.2 million acres [10]. The ongoing drought has led to an accumulation of dry trees, shrubs, and grasses [10]. A 2016 study found that this increase of dry organic plant material has more than doubled the number of large fires in the Western United States since 1984 [10]. One of the ways that dry matter may ignite is by lightning. Projections show that by 2060, there will be a 30% increase of area burned by lightning-ignited wildfires compared to 2011 [10]. 

Residents in California are in danger of losing their lives and property to fire damage. A single fire can lead to massive destruction. In 2018, the Woolsey Fire burned 96,949 acres and hundreds of homes, and killed three people [11]. Over one million buildings in California are within high-risk fire zones, and this number is projected to increase as temperatures continue to rise [10]. With the amount of dry organic matter increasing and wildfire incidence surging, there will be more cases of property damage and loss of life in California. High temperatures and extreme weather events make it more likely that people will fall victim to these life-threatening disasters. 

CONCLUSION

Increases in global temperature have a negative effect on human physical health and mental wellbeing. Climate change is making it more difficult to secure a livelihood, changing the spread of disease, and destroying lives and property. However, projections about rising temperatures allow farmers the chance to make informed decisions about which crops to grow, fishermen to relocate to areas that are less impacted by algal blooms, health experts to predict when and where outbreaks of certain diseases might occur, and fire protection services to increase their presence in high-risk areas. Projections help people predict where and when a climate change associated event is likely to occur, so that they may hopefully respond quicker and more efficiently. Consequences of climate change can be mitigated by using models as a guide for what to expect in California’s future. 

REFERENCES

  1. James I. 2018. California agriculture faces serious threats from climate change, study finds. The Desert Sun. Accessed January 31, 2023. Available from www.desertsun.com/story/news/environment/2018/02/27/california-agriculture-faces-serious-threats-climate-change-study-finds/377289002/
  2. U.S. Department of Agriculture. Climate Change and WINTER CHILL. Accessed December 23, 2023. Available from www.climatehubs.usda.gov/sites/default/files/Chill%20Hours%20Ag%20FS%20_%20120620.pdf
  3. Zhang S. 2015. Time to Add Pistachios to California’s List of Woes. WIRED. Accessed February 15, 2023. Available from www.wired.com/2015/09/time-add-pistachios-californias-list-problems/
  4. Semuels A. 2019. ‘They’re Trying to Wipe Us Off the Map.’ Small American Farmers Are Nearing Extinction. TIME. Accessed January 31, 2023. Available from time.com/5736789/small-american-farmers-debt-crisis-extinction/
  5. Gross L. 2021. As Warming Oceans Bring Tough Times to California Crab Fishers, Scientists Say Diversifying is Key to Survival. Inside Climate News. Accessed January 31, 2023. Available from insideclimatenews.org/news/01022021/california-agriculture-crab-fishermen-climate-change/
  6. Martens P. 1999. How Will Climate Change Affect Human Health? The question poses a huge challenge to scientists. Yet the consequences of global warming of public health remain largely unexplored. Am Scien. 87(6):534–541. 
  7. Lafferty KD. 2009. The ecology of climate change and infectious diseases. Ecol Soc Amer. 90(4):888-900. 
  8. Hanson N. 2022. Climate change drives another outbreak: In California, it’s a spike in Valley fever cases. Courthouse News Service. Accessed March 8, 2023. Available from www.courthousenews.com/climate-change-drives-another-outbreak-in-california-its-a-spike-in-valley-fever-cases/
  9. Treseder KK, Berlemont R, Allison SD, & Martiny AC. 2018. Drought increases the frequencies of fungal functional genes related to carbon and nitrogen acquisition. PLoS ONE [Internet]. 13(11):e0206441. doi.org/10.1371/journal.pone.0206441
  10. National Oceanic and Atmospheric Administration. 2022. Wildfire climate connection. Accessed January 31, 2023. Available from www.noaa.gov/noaa-wildfire/wildfire-climate-connection#:~:text=Research%20shows%20that%20changes%20in,fuels%20during%20the%20fire%20season
  11. Lucas S. 2019. Los Angeles is the Face of Climate Change. OneZero. Accessed January 31, 2023. Available from onezero.medium.com/los-angeles-is-burning-f9fab1c212cb

Not All Heroes Wear Capes: How Algae Could Help Us Fight Climate Change

By Robert Polon, Biological Sciences Major, ’21

Author’s Note: In my UWP 102B class, we were assigned the task of constructing a literary review on any biology-related topic of our choice. A year ago, in my EVE 101 class, my professor briefly mentioned the idea that algae could be used to sequester atmospheric carbon dioxide in an attempt to slow the rate of climate change. I found this theory very interesting, and it resonated with me longer than most of the other subject matter in that class. I really enjoyed doing the research for this paper, and I hope it gives people some hope for the future. I’d like to thank my UWP professor, Kathie Gossett, for pointing me in the right direction throughout the process of writing this paper.

 

Abstract

With climate change growing ever more relevant in our daily lives, scientists are working hard to find solutions to slow and reverse the damage that humans are doing to the planet. Algae-based carbon sequestration methods are a viable solution to this problem. Photosynthesis allows algae to remove carbon dioxide from the atmosphere and turn it into biomass and oxygen. It has even been proposed that raw algal biomass can be harvested and used as a biofuel, which can provide a greener alternative to fossil fuel usage. Though technology is not yet developed enough to make this change in our primary fuel source, incremental progress can be taken to slowly integrate algal biofuel into daily life. Further research and innovation on the subject could allow full-scale replacement of fossil fuels with algal biofuel to be a feasible option. Methods of algal cultivation include open-ocean algal blooms, photo bioreactors, algal turf scrubbing, and BICCAPS (bicarbonate-based integrated carbon capture and algae production system). There are many pros and cons to each method, but open-ocean algal blooms tend to be the most popular because they are the most economical and produce the most algae, even though they are the most harmful to the environment.

 

Keywords

Algae | Biofuel | Climate Change | Carbon Sequestration

 

Introduction

As we get further into the 21st century, climate change becomes less of a theory and more of a reality. Astronomically high post-Industrial Revolution rates of greenhouse gas emissions have started to catch up with humans, as the initial consequences of these actions are now coming to light with fear that worse is on the way. Many solutions have been proposed to decrease greenhouse gas emissions, but very few involve fixing the damage that has already been done. It has been proposed that growing algae in large quantities could help solve this climate crisis.

According to the Environmental Protection Agency, 76% of greenhouse gas emissions come in the form of carbon dioxide. As algae grows, it removes carbon dioxide from the atmosphere by converting it to biomass and oxygen via photosynthesis. Algae convert carbon dioxide to biomass at relatively fast rates. On average, one kilogram of algae utilizes 1.87 kilograms of CO2 daily, which means that one acre of algae utilizes approximately 2.7 tons of CO2 per day [1]. For comparison, one acre of a 25-year-old maple beech-birch forest only utilizes 2.18 kilograms of CO2 per day [2]. This amount of carbon dioxide sequestration can be done by only 1.17 kilograms of algae. After its photosynthetic purpose has come to an end, the raw algal biomass can be harvested and used as an environmentally-friendly biofuel. This literary review will serve as a comprehensive overview of the literature on this proposal to use algae as a primary combatant against global warming.

 

Carbon Dioxide

For centuries, heavy usage of fossil fuels has tarnished Earth’s atmosphere with the addition of greenhouse gases [3]. These gases trap heat by absorbing infrared radiation that would otherwise leave Earth’s atmosphere. This increases the overall temperature of the earth, which leads to the melting of polar ice caps, rising sea levels, and strengthening of tropical storm systems, among many other devastating environmental effects [4]. The most commonly emitted greenhouse gas, carbon dioxide, tends to be the primary focus of global warming treatments. 

These algal treatment methods are no different. Any algal treatment option is dependent upon the fact that algae sequester atmospheric carbon dioxide through photosynthesis. It converts carbon dioxide into biomass and releases oxygen into the atmosphere as a product of the photosynthetic process [5].

 

Algal Cultivation

There are four proposed methods of algal cultivation: open-ocean algal blooms, photobioreactors, algal turf scrubbing, and BICCAPS. These techniques all differ greatly, with various benefits and drawbacks to each.

 

Open-Ocean Algal Blooms

Algae is most abundant on the surface of the open ocean. With the addition of its limiting nutrient, iron, in the form of iron(ii) sulfate (FeSO4), massive algal blooms can be easily sparked anywhere in the ocean [3]. This seems to be the way that most scientists envision sequestration because, of all proposed cultivation techniques, this one produces the most algae in the least amount of time. Intuitively, this method removes the most carbon dioxide from the atmosphere, as the amount of CO2 removed is directly proportional to the quantity of algae undergoing photosynthesis.

There are many benefits to open-ocean algal blooms. There is no shortage of space on the surface of the ocean, so, hypothetically, there is a seemingly infinite amount of algal mass that can be cultivated this way. This technique is also very cost-efficient, as all you need to employ it is some iron(ii) sulfate and nature will do the rest [3]. 

Once the algal bloom has grown to its maximum size, there is an overabundance of algal biomass on the surface of the ocean. Some researchers have proposed that this mass be collected and used as a biofuel [5,6,7]. Others have proposed that we let nature play its course and allow the dead algae to sink to the bottom of the ocean. This ensures that the carbon dioxide it has taken out of the atmosphere is stored safely at the bottom of the ocean [8]. Here, the algal biomass is easily accessible for consumption by shellfish, who store the carbon in their calcium carbonate shells [3].

This solution is not an easy one to deploy, however, because algal blooms bring many problems to the local ecosystems. Often referred to as harmful algal blooms (HABs), these rapidly growing algae clusters are devastating to the oceanic communities they touch. They increase acidity, lower temperature, and severely deplete oxygen levels in waters they grow in [9]. Most lifeforms aren’t prepared to handle environmental changes that push them out of their niches, so it’s easy to see why HABs kill significant portions of marine life.

HABs can affect humans as well. Many species of alga are toxic to us, and ingestion of contaminated fish or water from areas affected by these blooms can lead to extreme sickness and even death. Some examples of these diseases are ciguatera fish poisoning, paralytic shellfish poisoning, neurotoxic shellfish poisoning, amnesic shellfish poisoning, and diarrheic shellfish poisoning [10]. The effects of harmful algal blooms have only been studied in the short-term, but from what we have seen, they are definitely a barrier in using this form of algae cultivation [11].

 

Photobioreactors

Photobioreactors are another frequently-proposed tool for cultivating algae. These artificial growth chambers have controlled temperature, pH, and nutrient levels that make for optimal growth rates of algae [12]. They can also run off of wastewater that is not suitable for human consumption. Photobioreactors minimize evaporation and, with the addition of iron, magnesium, and vitamins, increase rates of carbon dioxide capture are increased [1]. Due to the high concentration of algae in a relatively small space, photobioreactors have the highest rates of photosynthesis (and subsequently carbon dioxide intake) out of all of the cultivation methods mentioned in this paper.

This innovative technology was driven primarily by the need to come up with an alternative to triggering open-ocean algal blooms. Photobioreactors eliminate pollution and water contamination risks that are prevalent in harmful algal blooms. Furthermore, they make raw algal biomass easily accessible for collection and use as a biofuel, which open-ocean algal blooms do not [12].

The main drawback to this method is that the cost of building and maintaining photobioreactors is simply too high to be economically feasible right now [12]. Technological developments need to be made to lower the short-term cost of operation and allow for mass production if we want to use them as a primary source of carbon sequestration. Their long-term economic feasibility still remains unknown, as most of the cost is endured during the production of the photobioreactors. Money is made back through the algae cultivated, but the technology hasn’t been around long enough to show concrete long-term cost-benefit analyses without speculation [14]. 

 

Algal Turf Scrubbing (ATS)

Proposed in 2018 by botanist Walter Adey, algal turf scrubbing (ATS) is a new technique created to efficiently cultivate algae for use in the agriculture and biofuel industries. The process involves using miniature wave generators to slightly disturb the flat surface of a floway and stimulate the growth of numerous algal species in the water. Biodiversity in these floways increases over time, and a typical ATS floway will eventually have over 100 different algae species [11].

Heavy metals and other toxic pollutants occasionally make their way into the floways; however, they are promptly removed, to ensure that the product is as nontoxic as possible. The algal biomass is harvested bi-weekly and has a variety of uses. Less toxic harvests can be used as fertilizers in the agricultural industry, which research claims is the most economically efficient use for the harvest. It can also go towards biofuel use, although the creators of the ATS system believe the majority of their product will go towards agricultural use because they will not be able to produce enough algae to keep up with the demand (if our society moves towards using it as a biofuel) [11].

The problems with ATS are not technological, but sociopolitical, as the research team behind it fears that they will not get the funding and resources needed to perform their cultivation at an effective level [11].

 

BICCAPS

The bicarbonate-based integrated carbon capture and algae production system (BICCAPS) was proposed to reduce the high costs of commercial algal biomass production by recycling bicarbonate that is created when algae capture carbon dioxide from the atmosphere and using it to culture alkalihalophilic microalgae (algae that thrive in a very basic pH above 8.5). Through this ability to culture more algae, the system should, in theory, cut costs of carbon capture and microalgal culture. It is also very sustainable, as it recycles nutrients and minimizes water usage. The algae cultivated can also be turned into biofuel to lower fossil fuel usage [13].

The main drawback to this closed-loop system is that it does not cultivate as much algae as the other systems, though work is currently being done to improve this. It has been proven that the efficiency of BICCAPS significantly improves with the addition of sodium to the water, which stimulates the growth of alkalihalophilic microalgae [13]. This means that, with a little bit of improvement to the efficiency of the system, BICCAPS could become a primary algal biomass production strategy because of its low cost and sustainability. 

 

Use of Algae as a Biofuel

While algae may not have the energetic efficiency of fossil fuels, it is not far behind. It can be burned as a biofuel to power transportation, which would allow us to lower our use of fossil fuels and, subsequently, our greenhouse gas emissions. When dry algal biomass is burned, it releases more oxygen and less carbon dioxide than our current fuel sources. The increase in oxygen released into the atmosphere not only helps to lower CO2 emissions but increases the overall atmospheric ratio of oxygen to carbon dioxide. More research still has to be done to find the best possible blend of algal species for fuel consumption [12]. Solely using algae as a biofuel would not meet the world’s energy demand, but the technology for photobioreactors continues to improve, giving hope to one day use algae more than fossil fuels [6].

A common counterargument to proposals for algal biofuel usage is that burning dry algae only provides half the caloric value of a similarly-sized piece of coal. While this is true, it should be taken into consideration that that coal has an extraordinarily high caloric value and that the caloric value of algae is still considered high relative to alternative options [3].

It is often suggested that bioethanol, which essentially uses crops as fuel, should be used over algal biofuel. The main problem with this proposal is that farmers would spend more time cultivating inedible crops because they make for better fuel. This would lead to food shortages on top of the current hunger problem in our world. Farming crops also take up land, while growing algae does not [7].

 

Drawbacks

The main problems associated with using algae as a biofuel are technological and economical. We simply do not have the technology in place right now to produce enough algae to completely replace fossil fuels with it. In order to do this, we would have to establish full-scale production plants, which is not as economically viable as simply continuing to use the fossil fuels that degrade our planet [12]. Receiving funding for the commercialization of algae is the biggest obstacle this plan faces. It’s difficult to get money allocated to environmental conservation efforts because, unfortunately, it doesn’t rank very highly in our government’s priorities. Algal carbon sequestration has also never been observed at a commercial scale, so there is hesitation to fully commit resources to something that seems like a gamble.

 

Alternative Uses

It has also been proposed that algal biomass grown to sequester carbon dioxide should be used in the agricultural industry. As previously mentioned, the creators of ATS have suggested using it as a fertilizer [11]. Others say that it can be used to feed livestock or humans, as some cultures actually consume algae already [12]. The seemingly infinite supply of microbes can also be harvested and used heavily in the medical industry in the form of antimicrobial, antiviral, anti-inflammatory, anti-cancer, and antioxidant treatments [7].

 

Conclusion

Algae can be used to fight climate change because it removes carbon dioxide from our atmosphere, stores it as biomass, and replaces it with oxygen. Arguments have been made in many directions over the best method of algal cultivation. Triggering open-ocean algal blooms is certainly the most cost-efficient of these methods, and it produces the most algal biomass. The problem with using this technique is that these algal blooms have devastating ecological effects on the biological communities they come in contact with. Photobioreactors are another popular method among those who favor this strategy because of their ability to efficiently produce large quantities of algae; however, the main inhibition to their usage is the extremely high cost of construction and operation. With more focus on developing lower cost photobioreactors, they can potentially become the primary source of algal growth. Algal turf scrubbing is another strategy of algae cultivation that struggles with the problem of acquiring adequate funding for the operation. BICCAPS is a relatively inexpensive and eco-friendly way to grow algae in a closed system, but it yields low quantities of algal biomass compared to the other systems.

The raw algal biomass from these growth methods can potentially be used as a biofuel. Dry alga has a high caloric value, which makes it great for burning to power equipment. It does not burn as well as fossil fuels, but it does release more oxygen and less carbon dioxide than fossil fuels when burned. Of course, funding will be needed for increased algae production to make this a possibility, but with more research and advances in the field, algal growth would be a great way to remove large amounts of carbon dioxide that is stuck in Earth’s atmosphere and become our primary fuel source down the line.

 

References

  1. Anguselvi V, Masto R, Mukherjee A, Singh P. CO2 Capture for Industries by Algae. IntechOpen. 2019 May 29.
  2. Toochi EC. Carbon sequestration: how much can forestry sequester CO2? MedCrave. 2018;2(3):148–150.
  3. Haoyang C. Algae-Based Carbon Sequestration. IOP Conf. Series: Earth and Environmental Science. 2018 Nov 1. doi:10.1088/1755-1315/120/1/012011
  4. Climate Science Special Report.
  5. Nath A, Tiwari P, Rai A, Sundaram S. Evaluation of carbon capture in competent microalgal consortium for enhanced biomass, lipid, and carbohydrate production. 3 Biotech. 2019 Oct 3.
  6. Ghosh A, Kiran B. Carbon Concentration in Algae: Reducing CO2 From Exhaust Gas. Trends in Biotechnology. 2017 May 3:806–808.
  7. Kumar A, Kaushal S, Saraf S, Singh J. Microbial bio-fuels: a solution to carbon emissions and energy crisis. Frontiers in Bioscience. 2018 Jun 1:1789–1802.
  8. Moreira D, Pires JCM. Atmospheric CO2 capture by algae: Negative carbon dioxide emission path. Bioresource Technology. 2016 Oct 10:371–379.
  9. Wells ML, Trainer VL, Smayda TJ, Karlson BSO, Trick CG. Harmful algal blooms and climate change: Learning from the past and present to forecast the future. Harmful Algae. 2015;49:68–93.
  10. Grattan L, Holobaugh S, Morris J. Harmful algal blooms and public health. Harmful Algae. 2016;57:2–8.
  11. Calahan D, Osenbaugh E, Adey W. Expanded algal cultivation can reverse key planetary boundary transgressions. Heliyon. 2018;4(2).
  12. Adeniyi O, Azimov U, Burluka A. Algae biofuel: Current status and future applications. Renewable and Sustainable Energy Reviews. 2018;90:316–335.
  13. Zhu C, Zhang R, Chen L, Chi Z. A recycling culture of Neochloris oleoabundans in a bicarbonate-based integrated carbon capture and algae production system with harvesting by auto-flocculation. Biotechnology for Biofuels. 2018 Jul 24.
  14. Richardson JW, Johnson MD, Zhang X, Zemke P, Chen W, Hu Q. A financial assessment of two alternative cultivation systems and their contributions to algae biofuel economic viability. Algal Research. 2014;4:96–104.