Home » Posts tagged 'covid'

Tag Archives: covid

Want to Get Involved In Research?

[su_heading size="15" margin="0"]The BioInnovation Group is an undergraduate-run research organization aimed at increasing undergraduate access to research opportunities. We have many programs ranging from research project teams to skills training (BIG-RT) and Journal Club.

If you are an undergraduate interested in gaining research experience and skills training, check out our website (https://bigucd.com/) to see what programs and opportunities we have to offer. In order to stay up to date on our events and offerings, you can sign up for our newsletter. We look forward to having you join us![/su_heading]

Newest Posts

Among Virions

By Jordan Chen, Biochemical Engineering ‘24

 

What are viruses? Miniscule packages of protein and genetic material, smaller than all but the smallest cells, relatively simple structures on the boundaries of what we consider living. Undetectable to the human eye, these invisible contagions are rarely on the minds of the average person, occupying a semantic space in public consciousness more often than they are understood for their material reality. Stories are more likely to be described as “viral” than an actual virus, yet when the COVID-19 pandemic washed over the world at the end of 2019, the public suddenly had to confront that which was seemingly abiotic, simple, and small. However, the impact of the COVID-19 pandemic exceeded that unassuming material reality. With the shuttering of the global economy, mass death, political crisis, confusion, hysteria, and science without immediate answers, it’s become clear that the sum of COVID-19’s viral components is much more than the whole.

To emphasize this idea in the piece, coronavirus virions are depicted as massive and detailed larger than earth bodies, in a vital bloody red, surrounding and overwhelming the relatively simply shaded globe. What was formerly small, simple, and nonliving, can now be dramatically understood as larger than life, having created complex predicaments, and having taken on a life of its own in its assault against the world. This digital artwork was created in Blender.

Loneliness in Young Adults Causes Mental Decline in Covid-19

By Vishwanath Prathikanti, Political Science ‘23

Author’s note: As an undergraduate researcher at UC Davis, I have planned and executed a study in chemistry education and now am in the process of presenting findings. This experience sparked my interest in how students learn and what detriments there are to obtaining education. As a student, I was interested in learning what social isolation does to our brains and how it affects our education.

 

In the current Covid-19 pandemic, the norm in terms of education has been virtual classes and recorded lectures. In the interest of safety, schools have closed lecture halls, minimized the number of students staying in a single dorm, and generally encouraged students to avoid contact with others. While these steps are all necessary to prevent the spread of Covid-19, they also contribute to student loneliness, which severely hampers learning.

 

Why do we feel lonely right now?

When discussing social isolation today, we might find ourselves asking if we truly are “isolated.” Schools all across the country use Zoom to facilitate discussions and classes that would normally be in-person. Outside of the learning environment, many try to stay connected with friends and family via virtual meeting spaces to watch TV or play games together. However, being socially isolated isn’t necessarily about the number of interactions, but rather the quality of interactions. Hawkley et al. state that “Perceptions are critical … People can live rather solitary lives and not feel lonely, or they can have many social relationships and nevertheless feel lonely” [1]. 

This is coupled with the fact that historically, college students have been more prone to feelings of loneliness compared to the general populace. Diehl et al. were some of the first to study loneliness in college with an emphasis on transition-related causes, such as moving out for the first time or the formation of new relationships, and concluded that transitions naturally led to loneliness [2]. And indeed, the transition from in-person learning to online learning has been documented to have caused loneliness as well. Killgore et al. studied over 3,000 adults in the first three months of the Covid-19 pandemic [3].  The loneliness scores were calculated via a set of online questionnaires including the UCLA Loneliness Scale-3, and the Patient Health Questionnaire-9 [3].

Interestingly, even when communities started to reopen and participants noted that their “sheltering-in-place” was decreasing, their loneliness scores increased significantly from April to May 2020 and eventually plateaued in June, which was attributed to participants adjusting to their situations [3]. Diehl et al. speculated that “[refraining] from handshakes, hugs, and pats on the back,” long-held social behaviors to express closeness “have been radically altered,” leading to the continuation of loneliness even as we re-enter communities [3]. 

Indeed, physical touch has been shown to have an important link to loneliness, and even those who are socializing with others, or wouldn’t categorize themselves as lonely, still suffer if they are not touching others. In a study conducted in May 2020, Tejada et al. tested people to see if human touch would affect their feelings of loneliness despite belonging to a culture described as “individualistic” [4]. Tejada et al. explained that individualistic cultures, such as Anglo-Saxon societies, stress independence and neglect physical contact. They found that participants’ loneliness scores generally decreased when they were given a small oil rub by researchers [4]. They calculated the scores using heart rate, questionnaires, and an emotional recognition test [4]. The study essentially proves that even individuals who may view a lack of touch as normal, or those who normally have limited social interaction with others, still feel lonely without direct human contact.

 

Cognitive decay linked to loneliness

Now that we have established that social isolation leads to a general increase in loneliness, it is important to illustrate the link between loneliness and cognitive decay, which is negatively impacting students’ ability to learn. Cacioppo and Hawkley documented that, in addition to physical health problems such as increased blood pressure, increased levels of stress, and a decrease in physical activity, loneliness also contributes to various mental problems, such as a decrease in IQ and an increase in the risk of Alzheimer’s disease [5]. While Cacioppo noted that these mental problems were mostly observed in the elderly, there was evidence to suggest that loneliness early on would lead to changes in IQ levels over a lifetime. In young adults specifically, Cacioppo. et al. witnessed in a separate study that lonelier people tend to get more distracted and have a harder time focusing compared to people who did not feel lonely, indicating the lonelier people may have experienced cognitive decay [6].

So how are we supposed to avoid this cognitive and physical decay? According to Dr. Maggie Mulqueen in a PBS interview, we should practice social distancing, but make a more conscious effort to reach out to people and avoid social isolation. “We need to respect social distancing and hand-washing as our best means right now to save ourselves physically. But we need to really shore people up against social isolation,” she said [7]. Dr. Todd Ellerin, director of infectious diseases and vice chairman of the department of medicine at South Shore Hospital in Weymouth, Massachusetts, acknowledged the need for touching one another, and encouraged people to plan demonstrations of affection, even something as simple as a hug, in advance [8]. While it is important to minimize the spread of Covid-19, it is also important to maintain our own mental wellbeing and avoid isolating ourselves socially.

 

Citations

  1. Hawkley, et al. “From Social Structural Factors to Perceptions of Relationship Quality and Loneliness: The Chicago Health, Aging, and Social Relations Study.” November 2008. The Journals of Gerontology: Series B, Volume 63, Issue 6: S375–S384137. https://academic.oup.com/psychsocgerontology/article/63/6/S375/519628 
  2. Diehl, et al. “Loneliness at Universities: Determinants of Emotional and Social Loneliness among Students.” September 2018. Int J Environ Res Public Health 15(9): 1865. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6163695/ 
  3. Killgore et al. “Three months of loneliness during the COVID-19 lockdown.” November 2020. Psychiatry Research 293: 113392. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7430289/ 
  4. Tejada, et al. “Physical Contact and Loneliness: Being Touched Reduces Perceptions of Loneliness.” 2020. Adaptive Human Behavior and Physiology (6): 292–306. https://link.springer.com/article/10.1007/s40750-020-00138-0 
  5. John T. Cacioppo, Louise C. Hawkley. “Perceived social isolation and cognition.” 2009. Trends in Cognitive Sciences, Vol 13, Issue 10: 447-454. https://www.sciencedirect.com/science/article/pii/S1364661309001478 
  6. J.T. Cacioppo, et al. “Lonely traits and concomitant physiological processes: the MacArthur social neuroscience studies.” 2000. Int. J. Psychophysiol. (35): 143-154 https://www.sciencedirect.com/science/article/pii/S0167876099000495 
  7. Hari Srinivasan. “The impact isolation can have on mental health during the outbreak.” March 22, 2020. https://www.pbs.org/newshour/show/the-impact-isolation-can-have-on-mental-health-during-the-outbreak
  8. Steve Calechman. “How risky is a hug right now?” June 25, 2020. Harvard Health Blog. https://www.health.harvard.edu/blog/how-risky-is-a-hug-right-now-2020062520329

A Conversation on Bioethics with Linda Sonntag, PhD

By Mari Hoffman, Genetics & Genomics ‘21

Author’s Note: I was interested in interviewing Dr. Linda Sonntag because of her time and dedication spent in the biotechnology field. She has been involved in multiple biotechnology companies as the Chief Executive Officer and participating as a board member. The multitude and diversity of her experiences with different companies and projects have encouraged her to get involved with bioethics. She has been a leader in bioethics and has started many of the bioethical conversations that are still being discussed today. In that capacity, she has formed multiple bioethics committees, including the very first. I was very honored to be able to interview Dr. Sonntag and ask her some of my own questions revolving around bioethics in the past and modern development of biotechnology. 

 

This interview has been lightly edited for clarity and brevity.

Mari Hoffman: To start off, if you would like to give a brief introduction on who you are and your background.

Dr. Linda Sonntag: My name is Linda Sonntag, and I was born, raised, and educated in South Africa. I came to the United States in 1980 and completed my post-doctoral studies at UCSF with Herbert Boyer, the founder of Genentech. I quickly realized that I was not cut out for academia in this country. I come from being a very big fish in a very small pond and now I was a Mino in the ocean. I had to find a different way of using my education and I decided to go into industry, which was right at the beginning of the formation of biotechnology. 

MH: Since you entered the field of biotechnology when it was still relatively new, when do you first remember a conversation on bioethics taking place and how has that conversation changed with the increasingly advancing technology and scientific capabilities that we have today? 

LS: The very first conversation on bioethics took place before my involvement. I think it took place around 1976 at a seminar that was led by David Baltimore, after recombinant DNA and genetic engineering were first discovered. People were concerned about what could be done with biotechnology (a term only coined in the early 1980’s) and a public conversation on bioethics up until this point had not occurred. The technology was way ahead of any conversations or agreement on how to proceed to use it for the common good and not ill. To address the concerns on the ethical issues related to recombinant DNA, a conference was organized to discuss the ethics at Asilomar, in Northern California. A moratorium was placed on all genetic engineering for academic research until the scientist could agree on what was ethical or not. The moratorium lasted several years. During this time, a number of research areas were declared ethical and others not, and the organizers also played a significant role in establishing rules and regulations as well as the creation of multiple regulatory bodies to govern the use of recombinant DNA. At that time, the scientists were able to restart their research in a robust way.  

MH: What was your first direct experience with starting a conversation on bioethics?

LS: The first company I worked with was called Agrigenetics and it was the very first agricultural biotechnology company. At the time, no regulations were in place by any federal agency to regulate genetically modified foods (GMA). The very first conversation that I had around bioethics was around whether or not the agricultural industry should be regulated. I was the lone voice who believed it should be regulated. I was very concerned that if there were no regulations, people would be very frightened by the products we wanted to commercialize if we were successful. They might view us as creating monsters that could escape into the environment. Although I had my concerns, for expediency’s sake, the industry leaders as a whole decided against being regulated because regulation adds significant costs and delays the time to reach the market.

The very first experiment that went into the field was in Davis, CA, associated with a company that was founded by academic scientists at UC Davis. It was for a strawberry plant that had been engineered to have an anti-freezing gene derived from fish inserted into its DNA  so that strawberries would not freeze and the crop would not be destroyed when there was frost. When the GMO plants were planted, local citizens in the area protested and rioted by breaking down the greenhouses and destroying the crops. That product never reached the market. 

Agricultural biotechnology eventually took off, but in a highly regulated way. You can still see the stigma today that GMO plants and seeds hold; people remain afraid of them and the business models around how they are sold.

MH: How did that experience lead to you making a change in a company’s regulations? 

LS: My next involvement was a very interesting one. Around 1985, I joined a startup where we were the first to practice precision medicine and use it to create a preventive medicine program that was designed for a circumscribed group of individuals. Historically, prevention has always been in the domain of government and consequently had been very costly to implement since governments could not be seen to discriminate and therefore all newborns were being tested for those diseases that were preventable, whether they were at risk or not. 

I went around the country and licensed many genes that had been identified in academic labs that were linked to preventable diseases. They had the potential to be powerful predictors to identify who was at risk for certain diseases. I eventually licensed about 50 different genetic markers that could be used to identify individuals’ predispositions for developing a disease that was preventable. I was only interested in licensing genetic markers for diseases that had an environmental and/or behavioral component to them and that a patient could do something to change the outcome of the disease. After licensing these technologies, we created the very first artificial intelligence system which allowed us to circumscribe who was at risk. To test out the system we were involved with a large telephone company in Washington, DC who opted to offer our test to their employees. It quickly became very evident that with no rules in place, individuals were not protected from being discriminated against by their employers or insurance companies because they had a genetic profile that identified them as being at risk of developing diseases that could result in considerable healthcare costs or disruption to an individual’s productivity. To think through and address these issues, I created the very first bioethics committee, dedicated exclusively to problem solve and develop systems to protect individuals from discrimination. To overcome these issues, we were successfully able to identify individuals, and only we held the key to their identity and were able to preserve the patient’s anonymity from their employers and insurers. They could now get access to educational programs and support without their identity being exposed. That was the very first time that a bioethics committee was created as an institutional entity that made decisions about how businesses would be run in a more mindful and ethical manner. 

MH: That is very interesting. Would you say with ancestry tests like 23andMe where you are provided an option to give your name overrides the anonymity of genetic tests that you discussed? 

LS: Absolutely.  What we have discovered now is even if that data is anonymized, there are ways to deconstruct and identify individuals.

MH: It is very interesting that this conversation on data privacy that you started years ago is still a prevalent issue today. Are there any set laws that are currently in place today to provide protections?

LS: Laws do exist to protect genetic information from being used prejudicially, but if an individual gets refused insurance it is really hard to find out why they have been refused. If an employer has accessed that data and uses it prejudicially, for one to have any recourse, you have to prove that it was based on their knowledge of that genetic information, which is very difficult to prove.

The one law that is unfortunately currently at risk is the protections that come from the Affordable Care Act (ACA). The ACA forbids insurance companies from using pre-existing conditions to deny an individual any insurance. Due to COVID-19 and the Trump Administration’s attempt to end the ACA, a multitude of individuals who have lost their health insurance this past year due to the pandemic are now at risk of no longer being able to buy insurance that covers pre-existing conditions. All the sequelae and multitudes of long term health consequences of COVID-19 could be excluded from coverage by anyone who has lost their job as a consequence of this pandemic of epic proportions. A genetic predisposition might be included as a pre-existing condition, which might disqualify an individual for insurance. As long as the ACA is the law, nobody can be denied insurance for those reasons. Although there are these laws that exist, there are still issues around them and how to enforce them.

MH: Have there been any other experiences that you have that have led you to build a bioethics committee?

LS: The third time that I got involved in bioethics and formed a committee was when I was running a company called SyStemix, the very first stem cell company. We were using fetal tissue in our experiments which was a topic that has been controversial under Trump and prior to that during the George W. Bush administration. We were one of the first commercial companies that was openly admitting to using fetal tissue in our experiments. We knew that this might be highly controversial, so once again, I assembled a bioethics committee to opine on what we would face and how best to deal with the issues. Our committee actually included a Catholic Bishop to be a part of the conversation and eventually concluded that since we were not in any way women to choose abortion and since we were not paying for the tissue, the abortuses were simply being disposed of with no potential to benefit humankind. Even the Bishop agreed that using fetal tissue for the benefit of humankind was a worthwhile endeavor, as opposed to throwing the embryos away. 

Just this last year, Trump dismantled every single research project funded by the United States government that used fetal tissue in any way, thereby squandering hundreds of millions, if not billions of dollars worth of experiments by having all that research come to a screeching halt. 

Our company was founded on the use of a SCID-hu mouse model where any tissue from any organisms can be transplanted into the mouse since the mouse did not have an immune system of its own. It could not recognize the donor tissue as foreign and hence would not reject it. Few adult organs are capable of regeneration, whereas virtually every fetal tissue has applicability in these valuable experiments. This mouse model became the gold standard for all research on the etiology of human diseases and the potential ways to treat them.

In our case we were able to use it for AIDS and HIV research. It was the first time that we could actually create a fully functional human immune system in a mouse and infect it with HIV, to determine if different drugs could potentially cure HIV and AIDS. AZT, the very first approved HIV-antiviral drug was discovered to be effective in humans by using the SCID-hu mouse model around 1990. AZT is a pro-drug, and the only other organism that can convert it from a prodrug to an active drug is chimpanzees. By using this mouse model, it was no longer necessary to infect chimpanzees with HIV to study the disease. This year, unfortunately, for political reasons, all experiments that were using this gold standard mouse model for studying many human diseases came to a halt because President Trump decided that fetal tissue could not be used in any circumstance in any government funded research programs, for purely political reasons. 

MH: What do you think are some of the most current pressing bioethical issues?

LS: The other discussion that is very current, but I have mixed feelings on is about vaccines for COVID-19. COVID-19 trials are blinded and are conducted by splitting cohorts of individuals in a control arm and a treatment group, without the researchers or participants knowing which group is receiving the vaccine. Now that the experiments are unblinded and we can see that the vaccine is highly efficacious, the question becomes whether or not people in the control arm should be vaccinated. If they get the vaccine, it truncates our ability to see for example the longevity of the protection provided by the vaccine or long-term side effects by no longer being able to track the control group. So, what to do? The way the health care community is leaning is that the control group has to get the vaccine to protect them and then we have to figure out other ways to understand the longevity and side effects of vaccination. This is an ongoing discussion at the FDA and the NIH in order to make these important decisions around how to continue the clinical trials. Also, once the first vaccine is approved, how do you get other vaccines tested if there is already a vaccine available? There are a lot of ethical questions to consider regarding these issues.

MH: There is a lot of stigma about taking vaccines, how do you think the implementation of distributing the vaccine and getting people to take it will play out? 

LS: There are weekly conversations regarding how to distribute the vaccine and who should get it first. Clearly, they have to treat frontline workers first as they are the most at risk. Then the conversation is about who is most at risk for the virus aside from the frontline workers. People of color have a higher risk of getting sick from COVID-19 completely disproportionate to the population. The question raised asks if young children should be prioritized in getting the vaccine since they can be reservoirs of the virus and for their emotional and cognitive development must be allowed to return to school as soon as possible? There are still conversations going on around how to allocate the vaccine equally and I don’t think they have reached a complete conclusion other than the frontline workers will get it first. Who gets it next and how it rolls out is still under discussion. 

MH: Is there worry that there will not be enough people willing to get the vaccine due to stigma? 

LS: Yes, I think that is a very significant concern. I can personally tell you as a scientist that I think that vaccines and antibiotics have extended our lives dramatically. At the beginning of the 1900s, the average life span was about 40 years old due to people dying from common infectious diseases. The advantage of antibiotics and vaccines has extended our lifespan by double. I will not hesitate in getting a vaccine as soon as I can after it has been reviewed and approved by an independent, apolitical group of scientists.

MH: Are there any other major ethical topics that we missed that you would like to discuss?

LS: One critical vast ethical issue that we have not discussed is CRISPR technology. CRISPR technology is one of the most fraught technologies on the planet with the ability to do both good and bad. On the downside, scientists have found ways for example to change genes in entire populations of mice to render them infertile so that they cannot transmit Lyme disease or to eradicate entire populations of mosquitoes to prevent malaria or zika transmission or other mosquito borne diseases, of which there are many. What happens to the global ecosystem if these species are eradicated because they can no longer reproduce? The cat is out of the bag on this line of research, before a discussion on the ethics ever got started.

The first infants to have their genes in their germline modified have already been born in China. This means the germplasm (eggs and sperm) have been permanently altered and so these modifications will be transmittable to future generations. This is something that the scientific and civil community worldwide has historically completely forbidden. There are a lot more conversations surrounding ethics that need to take place in order for this technology to be broadly used. I’m afraid, it is already too late to regulate and control in a meaningful way from being used in ways that could be terribly detrimental to our planet and all its inhabitants, whether fauna, flora, microbes, or humans.

The Pursuit of a SARS-CoV-2 Vaccine: Lessons in Public Trust of Medical Institutions

By Jessica Lee, Biochemistry and Molecular Biology ‘21

Author’s Note: Alarmed by the fact that so many Americans are skeptical of receiving a COVID-19 vaccine, I wanted to write an article delving into the reasons why public trust in medical institutions has waned. I look to previous breaches of trust to propose public health messaging strategies for the rollout of the highly anticipated COVID-19 vaccine. 

 

As of November 2020, approximately 63% of Americans say they would not be willing to immediately receive a COVID-19 vaccineeven if the vaccine was approved by the Food and Drug Administration (FDA) and free of cost [1]. Public willingness to receive a COVID-19 vaccine has rebounded since its all time low of 50% in September of 2020. The fluctuation in willingness to be vaccinated reflects how the public perceives undue influence on the vaccine development and regulation process. A successful vaccine distribution process will require broad public support to control the ongoing global pandemic. 

[1]

The human and economic consequences of the COVID-19 pandemic are staggering: over 350,000 people in the U.S. have died from COVID-19 and the unemployment rate remains high at 6.7% as compared to 3.5% in February 2020 [2, 3]. Given the devastating impacts of COVID-19 on Americans’ health and well-being, why are so many Americans skeptical of a vaccine with the potential to restore normalcy?

The history of American public and private biomedical institutions may provide useful context for Americans’ skepticism of a potential COVID-19 vaccine. The anti-vaccination movements, opioid crisis, and bumpy introduction of COVID-19 therapeutics have all contributed to waning trust in public health institutions. With the approval of Pfizer/BioNTech and Moderna vaccine candidates for the prevention of COVID-19, the biomedical community needs to foster trust by delivering correct and consistent messaging to the public as vaccines become available to the American public. 

 

Trust in Biomedical Institutions 

The modern anti-vaccination, or “anti-vax,” movement in the U.S. was sparked by Andrew Wakefield’s infamous paper published in The Lancet and perpetuated by outspoken celebrities, politicians, and social media groups [4]. Even though Wakefield’s claims about a causal relationship between the childhood measles, mumps, and rubella (MMR) vaccine and autism have since been thoroughly debunked by a scientific majority, the damage caused by his falsified research is evident as measles outbreaks continue to impact the U.S. Characterized by fantastical and conspiratorial thinking, the modern anti-vax movement has evolved to include a range of beliefs about vaccines. On social media platforms, misinformation about vaccines can include false safety concerns to conspiracies about social control. 

However, there are also legitimate reasons to be skeptical of the pharmaceutical industry and its regulators. Mistakes driven by commercial interests have resulted in horrific public health crises. Motivated by profit, pharmaceutical companies misled the public about the safety of opioids, such as oxycontin, resulting in the liberal prescription of highly addictive and dangerous drugs. Opioid overdose is now one of the most common causes of preventable death in the U.S. [5]. Financial incentives can corrupt the scientific process, even corrupting leading medical experts. 

Dr. Russell Portenoy, a pain specialist, received millions of dollars from the manufacturers of opioids while assuring the public that addiction risks were low [5]. When the addictive nature of opioids became evident, Portenoy defended his actions. 

“My viewpoint is that I can have these relationships [and] they would benefit my research mission and to some extent, they can benefit my own pocketbook, without producing in me any tendency to engage in undue influence or misinformation,” said Portenoy [5].

In light of the unethicaland often illegalbehavior of pharmaceutical companies, the reaction of the American public is not entirely unreasonable. However, the waning trust in biomedical institutions is nonetheless a public health problem with clear consequences. In 2019, there were several outbreaks of measles among communities with low vaccination rates [6]. Over 1,200 cases were reported by the Center for Disease Control (CDC), which is the highest number of measles cases since 1992 [6]. It is important to highlight that overall measles vaccination rates are high throughout the country. However, outbreaks of deadly diseases can still occur when vaccination rates within a community dip below those needed for herd immunity. To eradicate a disease, outreach to fringe communities is necessary to ensure they buy into the vaccination process. Furthermore, vaccines must be made accessible to traditionally underserved communities. Within the context of the COVID-19 pandemic, this means that public health officials must reach out to those with anti-vaccination tendencies, ethnic minorities, and immigrant populations. Furthermore, the vaccine must be made widely accessible for the poorest citizens of all countries. Only then can COVID-19 be completely eradicated. 

Number of Measles cases reported by year

Data from CDC.gov as of October 15, 2020

[6] 

The consequences of eroded trust in biomedical institutions are even more tangible as authorities in the U.S. attempt to control the COVID-19 pandemic. Confusing, conflicting messaging and policies on cloth mask usage has resulted in a partisan gap of 16 points between Republicans and Democrats on regular mask usage [7]. Even though current data and modeling demonstrate that masks reduce infections, some Americans continue to refuse to participate in this common-sense risk reduction practice [8].

 

The Credibility of the Food and Drug Administration (FDA)

There has also been widespread confusion on the development of COVID-19 therapeutics. The FDA has the authority to allow the use of unapproved drugs and medical products during national emergencies under an emergency use authorization (EUA). Many COVID-19 therapeutics such as Remdesivir, hydroxychloroquine, and convalescent plasma have been granted EUAs for use in specific populations, such as hospitalized patients [9]. Importantly, medical products that are granted EUAs are not granted full FDA approval. To obtain an EUA, it must be determined that the product meets three criteria: the product may be effective in diagnosing, treating, or preventing a serious disease or condition, the known and potential benefits outweigh the risks, and there are no available alternatives [9]. Many of the EUAs granted for COVID-19 treatment have stirred controversy within the biomedical community. For instance, the FDA’s decision to grant an EUA for the use of convalescent plasma in August resulted in dissent among biomedical institutions. 

A National Institutes of Health (NIH) panel rebutted the FDA’s claims by issuing this statement: “There are insufficient data for the COVID-19 Treatment Guidelines Panel to recommend either for or against the use of COVID-19 convalescent plasma for the treatment of COVID-19” [10].

Other figures in the biomedical community such as Dr. Eric Topol, the director of the Scripps Research Translational Institute, criticized the head of the FDA, Dr. Stephen Hahn, for making hyperbolic statements on the safety and efficacy of convalescent plasma and for presenting misleading data to the public [11].  

So in order to get this straight, Dr. Hahn needs to also talk to the public and say that he erred and that there is no established evidence for survival advantage of convalescent plasma. That has to be determined through randomized trials that are ongoing,” said Topol on NPR’s All Things Considered [11].

The FDA also has played a controversial part in the development of hydroxychloroquine. The agency issued an EUA for hydroxychloroquine in March only to revoke the EUA in June after adverse cardiac events were reported [12]. Whether the FDA’s actions were influenced by political pressure, corporate pressure, or a desire to save lives, the controversy around COVID-19 therapeutics degrades public trust in the FDA as an institution. 

 

Emergency Use Authorization for Vaccines to Prevent COVID-19

The discussion on therapeutic EUAs is important since the two currently approved COVID-19 vaccines were first approved through the intermediate step of an EUA.  At time of publication, Moderna and Pfizer/BioNTech have successfully completed their phase three clinical trials for COVID-19 vaccines and received EUAs from the FDA [13]. Globally, approximately twenty other vaccine candidates are also in phase three clinical trials [13]. Each clinical trial has enrolled between 30,000 and 60,000 volunteers, half of which will receive the vaccine candidate and half of which will receive a placebo [13]. Approximately 160 infections of SARS-CoV-2 will be necessary to statistically determine the efficacy of each vaccine candidate. While only 160 infections might seem small in a clinical trial of 60,000, this number allows the FDA to determine if there is a statistical significance between the two arms of the clinical trial. Interim analyses may also be conducted at fewer infections by external data safety monitoring boards [14, 15]. Such data safety monitoring boards are independent of sponsors, regulators, and the scientists conducting the clinical trials. If the external board finds statistically significant results at an interim point, then the sponsors of the clinical trial may ask the FDA to review the vaccine for an EUA [14]. 

Published in a non-binding guidance document, the FDA outlines the criteria for potentially obtaining an EUA for a COVID-19 vaccine. Since this guidance document is non-binding, the FDA may modify the EUA process moving forward. If a sponsor seeks an EUA at an interim analysis of a phase three clinical trial, then they must demonstrate at least 50% efficacy, have a median follow-up duration of at least two months after the administration of the last dose, and safety data that would allow the FDA to make a favorable risk-benefit analysis [16]. Furthermore, the sponsor must provide sufficient data demonstrating the ability to consistently manufacture the vaccine [16]. If the FDA believes the criteria are met for an EUA, then the vaccine candidate may be administered to certain at-risk populations while the full-approval process continues. At the time of publication, both Pfizer and Moderna have produced data from their phase three clinical trials indicating their vaccines may be over 90% effectivefar surpassing the 50% efficacy threshold set by the FDA [13].

 

Developing and Maintaining Public Trust

The COVID-19 vaccine trials are safeguarded in many ways. The scientists at the FDA have approved the phase three clinical trial protocols and monitored phase one and two clinical trials for safety and efficacy. The oversight safety boards have watched for unexplained adverse events and paused the AstraZeneca trial when unexplained neurological symptoms presented in one participant [14]. Peer reviewers have analyzed and criticized the data and conclusions generated from phase one and two clinical trials. Furthermore, influential members of the biomedical community have spoken out when they believe mistakes have been made. Evidently, there are safety measures in place to protect the public from a dangerous or ineffective vaccine. However, safety measures are not perfect. When the FDA allowed the use of hydroxychloroquine and then revoked its EUA, the FDA weakened its authority with the general public. Even the appearance of political and commercial influence on the scientific process may elicit skepticism from the public. 

How can the biomedical community increase the public’s willingness to get the COVID-19 vaccine? Certainly, consistent messaging from figures of authority is important. Furthermore, the biomedical community must continue to hold regulatory agencies, corporations, and politicians responsible for their rhetoric. There must be political, legal, or economic consequences for misleading the public and degrading trust in medical institutions. Economic consequencesfor examplemight range from lawsuits to executives being debarred from working in the pharmaceutical industry. 

Biomedical professionals have advocated for widespread outreach to many different types of communities [15]. Social media campaigns can be effective in rapidly disseminating information by engaging users to add their own input. However, social media may also hinder outreach as demonstrated by the uncontrolled spread of misinformation by anti-vaccination groups on platforms such as Facebook [17]. Viral posts containing misinformation can seed public distrust in medical institutions. Still, polling indicates that Americans overwhelmingly trust medical professionals over industry leaders or politicians for information about vaccines [18].

[18]

Utilizing this trust would mean elevating medical scientists as the voice communicating the state of a COVID-19 vaccine rather than relying on politicians, the news media, or industry leaders. However, it is important to communicate scientific consensus rather than relying on the voices of individual biomedical professionals. Individuals can make genuine mistakes, have differing opinions, or be corrupted; thus, it is essential that public health messaging is centered around scientific consensus. 

The effectiveness of a COVID-19 vaccine on a population scale will depend on the percent of people willing to get the vaccine. To end the COVID-19 pandemic, it’s likely that most people will need to be vaccinated. To accomplish this, the biomedical community will need to work with the public to foster open and honest communication, understanding the public has relevant concerns about the influence of politics and commerce on the scientific process. By learning from previous anti-vax movements, public health professionals must counter the spread of misinformation with compelling, fact-based messaging. Ultimately, the public health community must regain the trust of the American public and appeal to Americans’ civic duty. The act of taking a vaccine is a social contract; as Dr. Topol says, “I take the vaccine to help you, not just me” [15]. The COVID-19 pandemic is one of the largest public health crises in modern times and it will require good science and good communication to solve.

 

References

[1] Brenan M. “Willingness to Get COVID-19 Vaccine Ticks Up to 63% in U.S.” Gallup, December, 2020. 

[2] “CDC COVID Data Tracker.” Centers for Disease Control and Prevention, January 6, 2021.

[3] “Employment Situation Summary.” U.S. Bureau of Labor Statistics, December, 4, 2020. 

[4] Hussain A, Ali S, Ahmed M, Hussain S. “The Anti-vaccination Movement: A Regression in Modern Medicine.” Cureus, July 2018. doi: 10.7759/cureus.2919.

[5] Gale AH. “Drug Company Compensated Physicians Role in Causing America’s Deadly Opioid Epidemic: When Will We Learn?” Mo Med, July 2016. 

[6] “Measles Cases and Outbreaks.” Center for Disease Control, November 2020. 

[7] Kramer S. “More Americans say they are regularly wearing masks in stores and other businesses.” Pew Research Center, August 2020. 

[8] Zhang K, Vliches TN, Tariq M, Galvani AP, Moghadas SM. “The impact of mask-wearing and shelter-in-place on COVID-19 outbreaks in the United States.” International Journal of Infectious Diseases, December 2020. doi: 10.1016/j.ijid.2020.10.002.

[9] “Frequently Asked Questions for Veklury (remdesivir).” U.S. Food and Drug Administration, October 2020. 

[10] COVID-19 Treatment Guidelines Panel. “Coronavirus Disease 2019 (COVID-19) Treatment Guidelines.” National Institutes of Health, Accessed November 2020. 

[11] “Researcher Criticizes FDA’s Exaggeration Of Plasma’s Efficacy In COVID-19 Treatment.” All Things Considered. NPR, August 2020. 

[12] “Coronavirus (COVID-19) Update: FDA Revokes Emergency Use Authorization for Chloroquine and Hydroxychloroquine.” U.S. Food and Drug Administration, June 2020. 

[13] Corum J, Wee S, Zimmer C. “ Coronavirus Vaccine Tracker.” The New York Times, January 2021. 

[14] Duke Science & Society. “Coronavirus Conversations: On the Ground – Inside the COVID-19 Vaccine Trials.” Online video clip. Youtube, 6 November 2020. 

[15] Duke Science & Society. “Coronavirus Conversations: Emergency Use Authorizations, Public Trust, and Vaccines.” Online video clip. Youtube, 7 October 2020. 

[16] “Emergency Use Authorization for Vaccines to Prevent COVID-19; Guidance for Industry.” U.S. Food and Drug Administration, October 2020. 

[17] Johnson NF, Velásquez N, Restrepo NJ, Leahy R, Gabriel N, Oud SE, Zheng M, Manrique P, Wuchty S, Yonatan L. “The online competition between pro- and anti-vaccination views.” Nature, May 2020. 

[18] Funk C, Kennedy B, Hefferon M. “Vast Majority of Americans Say Benefits of Childhood Vaccines Outweigh Risks.” Pew Research Center, February 2020.

The Mental Health Crisis of the COVID-19 Pandemic

By Aditi Venkatesh, Cognitive Science ‘21

Author’s Note: I wrote this piece for a UWP 104E assignment to explain the psychological consequences of the COVID-19 pandemic. I chose to focus on mental health because it holds personal value to me and addresses an often overlooked aspect of this pandemic. I support the creation of more accessible mental health services and hope to encourage people to reflect on their own mental well-being during these unprecedented times.

 

Recall your life just a few months ago. Hanging out with friends at a restaurant. Working in an office and chatting with coworkers. Sitting in a classroom with hundreds of classmates. Visiting family members. Buying groceries without worrying about wiping everything down. Going for a walk with neighbors.

Now, life looks a lot different. Zoom meetings all the time. FaceTime calls just to talk to friends and family. Paranoia about whether masks and gloves are covering your face and hands properly. Constantly checking social media for news. Using laptops every hour to communicate with classmates, coworkers, teachers, and pretty much anyone. The same routine repeated over and over again.

Undoubtedly, the COVID-19 pandemic has created a much different world. The consequences of this pandemic are primarily examined from a medical and economic perspective, but more attention needs to be brought to the psychological impacts of this pandemic. Mental health disorders have become increasingly prevalent in society; data from Active Minds, a mental health awareness organization, states that 50% of the United States population will experience a mental health condition at some point during their lifetime [1]. These statistics become even more concerning for young adults, with 75% of all cases of mental health issues beginning by the age of 24 [1]. With new layers of stress, anxiety, and isolation stemming from the pandemic, mental health issues are more widespread than before. Through the remainder of this piece, I will articulate outcomes of COVID-19 including the general effect of a pandemic on mental health, specifically focusing on younger populations at risk for anxiety and depression. I discuss alternative positive outcomes in people who normally thrive in times of limited social interaction and contrast this with the harmful impact of drastic isolation. I examine the benefits and consequences of increased technology use during COVID-19. Lastly, I have provided a few helpful mental health resources for students, and I urge everyone to assess their own mental health during these difficult times and advocate for better mental health services.

The coronavirus pandemic has created a mental health crisis across the world. Quarantining and shelter-in-place guidelines have isolated most people from family and friends, reduced social interactions drastically, and disrupted normal interpersonal interaction as shown in Figure 1 below, with data collected by the Kaiser Family Foundation towards the end of March 2020 [2]. People were already experiencing negative impacts on their mental health at the onset of the pandemic in early March, so undoubtedly, the duration of quarantine has exacerbated prior conditions. Individuals who are practicing shelter-in-place were more likely to report feeling mild or severe negative impacts on mental health than those who are not sheltering-in-place. Negative impacts include stress, anxiety, and general disruptions to life such as job loss, isolation, and income insecurity. These effects are particularly noticeable in individuals that were already at a higher risk for depression prior to the pandemic: younger adolescents, frontline healthcare workers, and individuals with chronic illnesses. 

Figure 1:

Considering the isolation that comes with quarantining, we must recognize that levels of interpersonal dependence produce key vulnerabilities to depression and other comorbid mental health disorders. How much we depend on other relationships has strong implications on support systems, coping mechanisms to mental health issues, and willingness to seek treatment [3]. Prior research on psychosocial risk factors has shown that sociotropy and autonomy are two personality traits that predict depression. Sociotropy is the reliance on interpersonal relationships, while autonomy is related to independence and seeking self-control. A 2018 study conducted by Otani, et al. at the Yamagata School of Medicine in Japan found that sociotropy was associated with negative beliefs about oneself, but autonomy was associated with negative beliefs about others and short-lived positive beliefs about oneself [4]. These results highlight that dependence on others and an imbalance of self-esteem can be linked to depression. Since quarantining creates isolation, this isolation leads to an increased tendency to contemplate and overthink negative core beliefs about oneself, resulting in lower levels of confidence and self-esteem. We should be aware that certain personality traits are more vulnerable to depression during this pandemic and mental health needs to be prioritized more than ever before. However, one might wonder if autonomous individuals are thriving during this pandemic, since there is undoubtedly less social interaction than normal. For example, imagine a student that has mild social anxiety and does not enjoy their large classes in school. They might be relieved because they don’t have to have lengthy conversations with classmates and can independently complete their work. This very well may be the case for certain individuals. Previous studies have shown that autonomy can cultivate creativity, and introversion has been closely linked with autonomous tendencies [5]. Individuals that typically thrive in solitude and focus on hobbies, jobs, and other passions may find comfort in having more time to themselves due to COVID-19. Alternatively, extremely high levels of autonomy, such as complete disconnection from family and friends can be a factor that contributes to depression. This stresses the fact that a majority of individuals need some level of healthy social interaction to have a balanced life.

Despite the finding of a correlation between isolation and depression, since the onset of the pandemic, people are finding creative ways to socially interact and combat the loneliness COVID-19 has created. Many folks schedule weekly or monthly calls with family and friends to catch up. Organizations are holding virtual discussions about mental health and ways to practice self-care. Students across the world are creating online board games and holding virtual game nights.

However even with these alleviating factors, the magnitude and ongoing duration of the pandemic’s restrictions continue to foster unusually high levels of loneliness. Students who may have participated in many extracurricular activities (which are now canceled), can’t talk to their friends as much, feel out of the loop in their lives, and struggle to find ways to spend their free time. Loneliness is one feeling that can contribute to depression and anxiety. In Figure 2, among data collected by Healthline through a YouGov COVID-19 Tracker during April 2020, the age group most affected by depression and anxiety (33%) was adults younger than 35 years old [6]. Additionally, this younger population showed an increase of anxiety and depression over a two-week span from April 12th to April 26th. Lastly, 45% of the U.S. population tested showed anxiety and depression PHQ-4 values out of the normal range [6]. However, older populations reported a plateau or slight reduction, which may be due to less dramatic lifestyle changes or less technology use compared to younger generations. This is significant because it illustrates that younger adults, which includes most students, disproportionately face worsened mental health.

Figure 2:

At the same time in China, researchers found similar patterns of anxiety and depression and chose to analyze why this exacerbation was present in younger individuals. Many research studies in China, where the peak of COVID-19 has passed, are examining the psychological repercussions of the pandemic, with a focus on depression and anxiety. In a published study from April 2020, researchers in Wuhan, China measured that the prevalence of depression and anxiety in the general population was 35.1% and 20.1%, respectively [7]. Further analysis of the self-report questionnaire confirmed that individuals younger than 35 years old reported more severe symptoms of depression and anxiety. In fact, among the younger population, those that spent more than 3 hours per day thinking about the pandemic faced more severe anxiety than those that spent 0-2 hours. This result highlights that in addition to actual lifestyle changes, thoughts about COVID-19 induces anxiety in young populations. This begs the question, why are younger people thinking about COVID-19 more than older people?

The answer is technology. Even though everyone uses technology, younger ages rely on technology more, especially for school and interacting with friends. Of course, technology is not all bad. In fact, society is most likely only able to function during this pandemic due to advancements like video conferencing, telemedicine, and online social groups. However, another study conducted in Wuhan, China explored the use of social media during the recovery interventions placed after the peak of COVID-19 [8]. Researchers found that social media support groups slightly reduced depression. But more significantly, adults that spent more than 2 hours on COVID-19 news on social media had increased anxiety and depression. Another study in Chicago in May 2020 explored the role of mainstream media in coronavirus news and depression. Researchers found that greater exposure to COVID-19 news, through cable news channels like CNN, local news channels, and the New York Times, led to higher perceived vulnerability to COVID-19, and this was strongly correlated with depressive symptoms [9]. Social media and mainstream media sources can both produce an undue burden on individuals through a barrage of stressful information about COVID-19 and lead to greater anxiety and depression.

Another form of technology, while useful for work and school, has unintended negative consequences: video conferencing. People have started to refer to these downsides as “Zoom fatigue” [10]. Zoom fatigue is the phenomenon where people are more tired and stressed with online meetings compared to in-person ones. I am sure many readers have experienced the similar stresses of looking presentable, awkward silences when nobody is speaking, and simply, less fun meetings. During Zoom meetings, it is difficult to discern normal social cues, such as body language and eye contact, over a video. This nonverbal communication is crucial to making conversations run smoothly. Removal of many social cues makes video calls feel impersonal. It can make even a catch-up video call to your best friend seem stressful. Additionally, previous research has shown that when responding online, even delays of up to 1.2 seconds can make a person seem unfocused and unfriendly [10]. These slight technological delays can dramatically contribute to greater stress and anxiety. Zoom fatigue can be especially taxing on younger populations that are still in school and are constantly in and out of Zoom meetings for courses.

As the COVID-19 pandemic continues, society finds itself at crossroads. How do we balance the positive and negative impacts of the technology use? Obviously, we cannot simply get rid of Zoom meetings and online classes; however, this pandemic gives us a crucial opportunity to expand online mental health services. Past research on mental health effects during the 2003 SARS epidemic in China showed similar prevalence of worsened mental health, with 48% of the participants reporting deteriorated mental health because of the SARS epidemic through anxiety and depression; this is very similar to the 47% found in the 2020 KFF study [11, 2]. If mental health issues are just as exacerbated in our pandemic 15 years later even with greater technological advancements, it accentuates the disparities in accessible online mental health care. Increasing virtual therapy appointments, online support groups, and videos for stress-relieving techniques like meditation, breathing exercises, and self-reflection are some starting points.

A CDC study conducted in June 2020, several months following the onset of the pandemic, found that people aged 18-24 years still face the highest prevalence of mental health conditions [12]. However, 30.9% of all participants showed anxiety and depression symptoms above normal PHQ-4 measurements; this illustrates a reduction compared to the finding of 45% measured in the April 2020 Healthline survey [12, 6]. Most importantly, I hope this shows that things are getting better. I especially encourage all readers to reflect on how to better take care of their own mental health. It is so important to practice self-care, which can be different for everyone! This can be exercising, seeing a therapist, hanging out with friends, getting more sleep, or setting boundaries for your own capabilities. It’s okay to prioritize your mental health when things get overwhelming. Therapy can be helpful for some folks, so here are some resources to be aware of. Student Health and Counseling Services offers on-campus counseling appointments for students (call (530) 732-0871 or visit hem.ucdavis.edu to schedule). Free tele-mental health and online counseling appointments are offered through Therapy Assistance Online (visit taoconnect.org and sign up with your UC Davis email). Text RELATE to 741741 to chat live with a crisis counselor, available 24/7 through the Crisis Text Line. Lean on your support systems and know that you are not alone! Mental health is just as important as your physical health. I hope we can take this time to acknowledge the mental health crisis this pandemic has created by improving available mental health services and making mental healthcare more accessible for at-risk populations.

 

References

  1. Statistics. (2020, June 24). Retrieved August 07, 2020, from https://www.activeminds.org/about-mental-health/statistics/
  2. Panchal, N., Kamal, R., Orgera, K., Cox, C. F., Garfield, R., Hamel, L., Muñana, C., & Chidambaram, P. (2020, April 21). The Implications of COVID-19 for Mental Health and Substance Use. Retrieved from https://www.kff.org/coronavirus-covid-19/issue-brief/the-implications-of-covid-19-for-mental-health-and-substance-use/
  3. Meissner, B. L., & Bantjes, J. (2017). Disconnection, reconnection and autonomy: four young South African men’s experience of attempting suicide. Journal of Youth Studies, 20(7), 781–797. doi: 10.1080/13676261.2016.1273512
  4. Otani, K., Suzuki, A., Matsumoto, Y., & Shirata, T. (2018). Marked differences in core beliefs about self and others, between sociotropy and autonomy: Personality vulnerabilities in the cognitive model of depression. Neuropsychiatric Disease and Treatment, 14, 863–866. doi: 10.2147/ndt.s161541
  5. Runco, M. A., & Pritzker, S. R. (1999). Encyclopedia of creativity. San Diego, CA: Academic Press.
  6. Healthline Mental Health Index: Week of April 26 – U.S. Population. (2020, May 14). Retrieved from https://www.healthline.com/press/healthline-mental-health-index-week-of-april-26-u-s-population
  7. Huang, Y., & Zhao, N. (2020). Mental health burden for the public affected by the COVID-19 outbreak in China: Who will be the high-risk group? Psychology, Health & Medicine, 1-12. Advance online publication. doi: 10.1080/13548506.2020.1754438
  8. Ni, M. Y., Yang, L., Leung, C., Li, N., Yao, X. I., Wang, Y., Leung, G. M., Cowling, B. J., & Liao, Q. (2020). Mental Health, Risk Factors, and Social Media Use During the COVID-19 Epidemic and Cordon Sanitaire Among the Community and Health Professionals in Wuhan, China: Cross-Sectional Survey. JMIR Mental Health, 7(5). doi: 10.2196/19009
  9. Olagoke, A. A., Olagoke, O. O., & Hughes, A. M. (2020). Exposure to coronavirus news on mainstream media: The role of risk perceptions and depression. British Journal of Health Psychology. Advance online publication. doi: 10.1111/bjhp.12427
  10. Sander, L., & Bauman, O. (2020, May 22). Zoom fatigue is real – here’s why video calls are so draining. Retrieved from https://ideas.ted.com/zoom-fatigue-is-real-heres-why-video-calls-are-so-draining/
  11. Lau, J. T., Yang, X., Pang, E., Tsui, H. Y., Wong, E., & Wing, Y. K. (2005). SARS-related perceptions in Hong Kong. Emerging Infectious Diseases, 11(3), 417–424. doi: 0.3201/eid1103.040675
  12. Czeisler, M. É., Lane, R. I., Petrosky, E., Wiley, J. F., Christensen, A., Njai, R., Weaver, M. D., Robbins, R., Facer-Childs, E. R., Barger, L. K., Czeisler, C. A., Howard, M. E., & Rajaratnam, S. M.W. (2020, August 13). Mental Health, Substance Use, and Suicidal Ideation During the COVID-19 Pandemic — United States, June 24-30, 2020. Morbidity and Mortality Weekly Report 2020, 69, 1049–1057. doi: 10.15585/mmwr.mm6932a1

Will This Pandemic Unite Us Against Climate Change?

By Pilar Ceniceroz, Environmental Science and Management ‘21

Author’s Note: I originally wrote this piece for a UWP104E assignment. However, the topic remains relevant to people all around the world. In the past, it has been hard to visualize our individual impacts on the environment. COVID-19 has become a great example of how behavioral changes can drastically transform our surroundings. I would like my readers to understand the power of unity in the face of what might be the next global crisis, climate change. 

 

Introduction 

After the World Health Organization (WHO) declared a global health emergency on January 30th 2020, the world has seen extreme changes as the daily lifestyle of almost everyone in the world has been rapidly altered [1]. The ongoing effort to slow the spread of the virus while sheltering-in-place has not been without sacrificecountless people lost their jobs, most cannot physically go to school, and everyday activities have been significantly modified. However, this halt of “business as usual” has fascinating impacts on the environment. Stay-at-home orders shut down production in industrial facilities and power plants and minimized personal vehicle use [2]. With a major decrease in economic activity, highly polluted cities around the world are now seeing clearer skies. The seemingly dull, repetitive routine of quarantine life has allowed the environment to flourish.While consequences of COVID-19 include global economic devastation, the environment has seen both indirect positive and negative impacts as a result of stay-at-home orders and the declining economy. Regions with COVID-19 restrictions experienced a decrease in air and water pollution. These restrictions included a stop to nonessential work and travel as well as closing of restaurants and bars. Concurrently, the amount of single use products has significantly increased to limit the spread of the virus. Decreasing air pollution is a major milestone for our modern world, however, as the world returns to normal life, pollution levels will follow. Although a short term decrease in greenhouse gas (GHG) emissions is not a sustainable way to support the environment, communities around the globe have witnessed the instantaneous impacts of our everyday habits on the environment due to COVID-19. 

 

Drop in Atmospheric and Water Pollution 

Today, 91% of the world population lives in places where poor air quality exceeds the permissible limits set by the WHO [2]. Air quality is an important contributor to human health and living in an area with poor air quality can exacerbate the symptoms of COVID-19. According to the 2016 WHO report, air pollution contributes to 8% of total deaths in the world [2]. Countries that normally struggle with unhealthy air, such as China, USA, Italy, and Spain, have since seen clearer skies for the first time in decades after taking aggressive measures to slow the spread of the virus. There has been a dramatic decrease in the amount of CO2, NO2, and particulate matter emitted in China with the halt of industrial operations with the decrease in demand for coal and crude oil (see fig. 1) [3]. 

 

Changes in nitrogen dioxide emission levels in China from before and after lockdown. 

Fig. 1. Zambrano-Monserrate, Manuel A., et al. “Indirect Effects of COVID-19 on the Environment.” Science of The Total Environment, vol. 728, 20 Apr. 2020, p. 138813., doi:10.1016/j.scitotenv.2020.138813.

 

Since this same time last year, air pollution levels have dropped 50% in New York [1]. There has been a 25% decrease in air pollution since the start of this year in China, one of the largest manufacturing countries [1]. The closing of factories contributed to a 40% reduction in coal usage at one of China’s largest power plants [1]. The average coal consumption of power plants has reached its lowest point in the past four years [3]. Clearly, the outbreak has improved short term air quality and has contributed to reducing global carbon emissions. Fewer flights and social distancing guidelines have reduced carbon emissions as well as other forms of pollution. Tourism significantly decreased worldwide, and beaches around the world have been cleaned up. For example, citizens of Venice, Italy were amazed to see crystalline waters and healthy fish in their canals [1]. 

 

 Comparison of air quality in some of the biggest cities around the world before the COVID-19 pandemic and while the lockdown. 

Fig. 2. Saadat, Saeida., et al. “Environmental Perspective of COVID-19.” Science of The Total Environment, vol. 728, 22 April 2020, p. 138870., doi:10.1016/j.scitptenv.2020.139815. 

 

Increased Single Use Plastics 

In order to completely analyze the impact of COVID-19 on environmental health, the negative impacts on the environment from the virus are equally as important as the positive effects. Although travel restrictions have led to less pollution caused by tourism, the amount of single use plastics and medical equipment has significantly increased waste around the world. In the USA, there has been a significant increase in the amount of single-use personal protective equipment, such as masks and gloves [1]. 

Imagine the amount of trash created when millions of people use one or a couple of masks daily, single use gloves and hand sanitizers. With a population of eleven million people, the city of Wuhan produced an average of 200 tons of clinical trash on any single day in February 2020, compared to their previous average of fifty tons per day [1]. This number is four times the amount the city’s only dedicated facility can incinerate per day [1]. 

The demand for plastics has increased as consumers move to online purchasing. Shelter-in-place guidelines established in most countries have driven consumers to increase their demand for online orders and home delivery [2].The increasing demand for shipping and packaging greatly increases the amount of waste produced as well as GHG emissions with increased activity in supply lines. Out of concern of spreading the virus through the plastic surfaces in recycling centers, some cities stopped their recycling programs in the U.S. [2]. Additionally, in some of these cities, citizens are not allowed to use reusable bags at grocery stores. Similarly, some European cities have seen restrictions within waste management. Italy has prohibited infected residents from sorting their personal household waste [2]. Industries have repealed the disposable bag bans, many have switched to single-use packaging, and online food ordering has increased in popularity [2]. The consumption of single use plastics has skyrocketed to limit transmission [1, 3]. Suspension of sustainable waste management practices potentially escalate environmental pollution. 

 

Medical wastes generated during COVID-19 pandemic in the environment.

Fig. 3. Saadat, Saeida., et al. “Environmental Perspective of COVID-19.” Science of The Total Environment, vol. 728, 22 April 2020, p. 138870., doi:10.1016/j.scitptenv.2020.139815.

 

Where Do We Go From Here? 

Over the last few months, people were enamoured by the modern-day pollution that vanished before their eyes. Strict stay-at-home orders decreased the amount of air and water pollution in otherwise unhealthy cities. Contrarily, the considerable increase in single use plastics may have a lasting negative impact on the environment. Although these outcomes may be hard to compare in magnitude, they help put into perspective the larger picture. Short term change is not a sustainable way to clean up the environment especially when it occurs alongside economic devastation. Before the pandemic, individual action against climate change felt like an abstract idea, out of reach due to its lack of immediacy. Now, the world has seen changes to our environment from worldwide behavior. Visible skies and vibrant waterways are distinguishable changes that are legitimate grounds to build momentum and take action for a healthier future. Although the pandemic may not have a drastic impact on the future of the environment itself due to conflicting effects, it can instigate discussion to improve personal actions that impact the environment. Long-term structural change and individual behavior changes are critical in combating environmental pollution. Moving forward, it is imperative that the unification of collective conscious behavior be a driving force to combat climate change. If neglected, climate change is likely to take many lives in the future, portraying this pandemic as a minor devastation. Let the urgency of our united global response to COVID-19 influence our future response to the next global crisis; climate change. 

 

References

[1] Saadat, Saeida., et al. “Environmental Perspective of COVID-19.” Science of The Total Environment, vol. 728, 22 April 2020, p. 138870., doi:10.1016/j.scitptenv.2020.139815. 

[3] Wang, Qiang, and Min Su. “A Preliminary Assessment of the Impact of COVID-19 on Environment – A Case Study of China.” Science of The Total Environment, vol. 728, 22 Apr. 2020, p. 138915., doi:10.1016/j.scitotenv.2020.138915.

[2] Zambrano-Monserrate, Manuel A., et al. “Indirect Effects of COVID-19 on the Environment.” Science of The Total Environment, vol. 728, 20 Apr. 2020, p. 138813., doi:10.1016/j.scitotenv.2020.138813.