Home » Posts tagged 'stem cells'

Tag Archives: stem cells

Want to Get Involved In Research?

[su_heading size="15" margin="0"]The BioInnovation Group is an undergraduate-run research organization aimed at increasing undergraduate access to research opportunities. We have many programs ranging from research project teams to skills training (BIG-RT) and Journal Club.

If you are an undergraduate interested in gaining research experience and skills training, check out our website (https://bigucd.com/) to see what programs and opportunities we have to offer. In order to stay up to date on our events and offerings, you can sign up for our newsletter. We look forward to having you join us![/su_heading]

Newest Posts

A Review of Recent Research into Remote Control of Stem Cell Differentiation through Light

By Jacob Pawlak, Biochemistry and Molecular Biology ’23

Author’s Note: I wrote this piece to bring attention to the exciting new field of research being conducted primarily in China that aims to control the differentiation of stem cells by irradiating them with different wavelengths of light. This non-invasive method is potentially of great value to those working in regenerative medicine and has a strong foundation of research for future exploration. I hope to introduce this fascinating concept to future researchers to pique their interest in the field. 

 

Introduction 

Regenerative medicine is the use of human bodily mechanisms to restore functionality, cure diseases, and heal injuries. In particular, this field’s research is primarily concerned with healing previously untreatable injuries to the nervous system and regrowing musculoskeletal tissue from the aftereffects of traumatic injury or disease. The body is incapable of repairing traumatic injury to the brain or spinal cord completely, and regenerative medicine aims to use stem cells as a source of new tissue. This primarily consists of manipulating stem cells into specific cell types at the injury sites. These injuries are not particularly uncommon; in just the US, an average of 17,000 people a year are hospitalized for spinal cord damage [1].

Within the field of regenerative medicine, remote control of stem cell differentiation is one of its most promising areas of research, as it avoids the major issue of complications arising from invasive procedures, such as a risk for infection or an autoimmune response. Non-invasiveness is typically achieved through the use of near-infrared light, which is capable of penetrating tissue layers to reach target sites without harming normal cells in its path [2]. Invasive procedures require large surgical teams and expose the patient to potential infection. Instead, non-invasive procedures can be done as part of outpatient care, not requiring lengthy hospital visits. Photobiomodulation has recently emerged as one of the most promising candidates for remote control of stem cell differentiation. Photobiomodulation is the act of exposing cells to specific wavelengths of light to influence gene expression and shift cellular processes towards a specific target, such as increased differentiation into a target cell type or increased proliferation of the stem cells [2]. This often takes the form of the exposed light influencing crucial biochemical pathways in the cells, “pushing” the cells towards the researcher’s target cell type or towards increased replication. Upon reaching the site, the photons can influence the cell’s genetic expression on its own, or be converted into other influential wavelengths by novel optical devices we will go on to describe in this review [2]. 

There are two primary cell types targeted by researchers in regenerative medicine. The first are neural stem cells, which are directed to differentiate into astrocytes, cells that act to regulate blood flow and repair the nervous system following infections and injuries [3]. The second target for control are mesenchymal stem cells, which are found throughout the body and are capable of differentiating into a wide variety of musculoskeletal cell types such as bone, muscle, and  cartilage [4]. These two cell types form the backbone of photobiomodulation research due to their potential use in regenerating complex, irreparably damaged organs such as the spinal cord.  

This review presents the findings of recent research into the remote control of human stem cell differentiation. While these researchers have not worked with in vivo cells, they have laid the groundwork for a wide range of potential exploration routes for further research into stem cell differentiation control via photobiomodulation and novel optical methods. 

Types of Stem Cells Researched

The two primary types of stem cells being researched for remote control are mesenchymal stem cells and neural stem cells. Mesenchymal stem cells are typically selected to create bone cell cultures, while neural stem cells are directed towards forming glial cells, which support the nervous system by forming sheaths around neural pathways and regulating blood flow [3,4]. 

Mesenchymal stem cells have been the primary focus of novel research, due to the relative ease of acquiring human-adipose derived stem cells (hADSC). These cells are extracted from human fat tissue and are capable of differentiation into multiple cell types. Most papers have focused on increasing the proliferation of these cells alongside increasing their differentiation into osteoblasts [7-9]. These cells are primarily useful in regenerative medicine for application to traumatic injuries to the musculoskeletal system.  

In both types of cells, the light triggers photoreceptor complexes that are sensitive to the upper and lower bound of visible light wavelengths, or red and blue light [5-9]. These complexes induce the cellular modifications that lead to the changes in the stem cell’s rates of proliferation and differentiation. Thus, research focuses primarily on only red, blue, and occasionally green light, as stem cells are not uniquely reactive to more moderate colors on the visible light spectrum due to lack of sufficient sensitivity.  

Novel Non-Invasive Methods – Photobiomodulation

Typically in photobiomodulation research, LED diodes are placed over cell cultures to irradiate them at specific light wavelengths for approximately 60 minutes daily over the course of 5-10 days [5-8]. Once this period is complete, researchers examine the cell cultures for signs that the cells have differentiated, such as the release of signature proteins into the culture medium or through visual inspection with a microscope [5-8].  

In 2019 Wang et al. was successful in multiplying the proliferation of neural stem cells by 4.3x, and their differentiation rate into astrocytes by 2.7x through treatment with low-power blue light irradiation [5]. Proliferation measures the rate of population increase of cells, while differentiation measures how many of the stem cells develop into specialized cells. A newer study in 2021 by Yoon et al. found an increase in astrocyte proliferation through red-light treatment [6]. Notably, Yoon was able to find that red light could influence astrocyte proliferation without affecting other cells in the area, demonstrating the light’s effects in an environment closer to the human body, unlike Wang’s work on isolated astrocyte cultures. These papers making use of different wavelengths of light for different situations speaks to the versatility of photobiomodulation as a method of controlling astrocyte populations. 

Comparing Light Wavelengths 

While some innovative work has been done with novel optical devices, most research deals with the cheaper and simpler direct application of visible light. Visible light has been applied to both neural and mesenchymal stem cells to observe their reactions and to find wavelengths that can control differentiation and proliferation of these cells.  

The application of visible light can be broadly split into two categories: red and blue. Exclusively red-light wavelengths have been found to increase the proliferation of both  mesenchymal and neural stem cells [6, 8-9]. Meanwhile, blue light has mixed effects. On neural stem cells, it increases proliferation and differentiation into astrocytes, whereas on mesenchymal stem cells it has been found to lower proliferation while raising the rate of differentiation into osteoblasts [5, 7-8]. Some preliminary work has been done on green light, which has been found to cause the same effects as blue light on mesenchymal stem cells, due to the two colors’ close proximity on the visible light spectrum [7].

The most promising results come from the work of Crous et al., whose team found that they could increase both differentiation and proliferation in mesenchymal stem cells by alternating red and green light irradiation, synthesizing the effects of the two wavelengths [9]. In combination with Wang Y et al.’s work on mesenchymal stem cells with single wavelength application, this suggests that the inhibitory effects of green light on proliferation are less potent than the enhancing effects of red light, and may even be overwritten completely. This alternation between lower energy red light and higher energy green light poses the clearest path forward for future research into direct light application to stem cells, as increasing both effects is synergistic for tissue regeneration and injury repair. 

Novel Non-Invasive Methods – Upconversion Nanoparticles (UCNPs)

While most research is conducted exclusively with the application of light, novel optical devices have been developed to work in conjunction with light application for finer control of stem cell differentiation. Upconversion nanoparticles (UCNPs) are artificial, nano-scaled lattices of various metal ions that exhibit the capacity to upconvert photons, a process that involves absorbing two lower-energy photons and releasing them as a single higher-energy photon [1, 13]. These are especially useful in regenerative medicine research as they are easily taken in by cells [13]. Wang K. et al and Zhang Y.  et al. both used UCNPs in conjunction with near-infrared (NIR) light to control stem cell  differentiation [11-12]. Both teams irradiated their cell cultures with NIR light, which can penetrate deeper than higher-energy light. This NIR light then activated UCNPs within the cultures to release UV light that activated stem cell differentiation factors from where they were loaded onto the UCNPs. Wang’s team was able to increase mesenchymal stem cell osteogenic differentiation, while Zhang’s team successfully observed increased differentiation into glial cells, a broad category which includes astrocytes and other nervous system support cells.  

Additionally, UCNPs are not exclusively used to release differentiation factors, as Wang M et al.’s team was able to use UCNPs to upconvert NIR light into visible blue light to achieve deeply penetrating visible light exposure, which has high potential for use at injury sites [5]. The use of UCNPs can circumvent the problems of direct application of UV light to cell cultures, such as genetic damage and low tissue penetration. These UCNPs could provide a tool by which stem cells can be influenced in more selective regions, as their area of effect is limited to tissue sites where they have been directly implanted. 

However, while UCNPs have utility, they still pose a challenge to future regenerative medicine research in that they must be somehow applied directly to the target stem cells, requiring an invasive method such as injections. This is a common issue that different research teams have run into. A novel alternative to UCNPs has been developed by Zhang S. et al that applies NIR light to copper sulfide nanostructures [10]. These nanostructures produce electromagnetic oscillations upon stimulation with NIR light that have been found to increase the differentiation of hADSCs into neuron-like cells. While innovative, this method still requires the invasive placement of copper-sulfide nanomaterials at the site of target stem cells to impact their differentiation. Although it provides a potential alternative to UCNPs, this method has not been tested by any other research teams on stem cell cultures and requires a great deal of further research before it can be implemented as a regenerative medicine procedure. Regardless of the nanobiology tools selected, researchers still must identify a way to place their developed structures near target cells. 

Future Possibilities

A potential future for photobiomodulation research lies in the combination of Wang M et al.’s work with UCNPs in combination with visible light application and the alternating light method of Crous et al. to achieve increased proliferation and differentiation with relatively non-invasive deep tissue injury site access [5, 9]. 

Additionally, Crous’ work with earlier neural photobiomodulation studies gives researchers a way to potentially further increase astrocyte proliferation and differentiation by combining Wang M. et al.’s blue light method with Yoon SR et al.’s red light method, thereby activating two different gene expression pathways simultaneously [5-6]. 

The alternating light method requires further inquiry, but Crous et al. have delivered promising results in the form of increased cell movement towards a specific direction in their alternating light research [9]. This directionality is important for regenerative medicine, as cells need to be directed to grow and differentiate at specific points in injury sites to prevent undesired cell growth that could interfere with normal tissue function. Directional application of green and red light could be used in specific patterns to direct mesenchymal stem cells to grow towards a  target site. Specific control over the shape and structure of stem cell differentiation is the next  step for regenerative medicine research, as it allows for the construction of more complicated  tissues and structures for larger injuries and for potential use in organ regeneration. 

Ultimately, this research is based on the application of light; the specifics of potential applications can still be tweaked. As previously mentioned, LED diodes are placed to irradiate samples for roughly an hour a day for approximately a week [5-8]. Scientists have prioritized similar methods to achieve comparable results with each other, but the use of such regular conditions leaves photobiomodulation open for a great deal of further experimentation, as  optimized application of visible light has not yet been determined. Longer or shorter exposure  times, alongside lowering or raising the power of the light sources has not yet been attempted on  stem cell cultures. Furthermore, work with direct light has not been performed on cells that are  heavily obscured from the light source, as would be expected at the site of a deeply placed  traumatic injury in a clinical setting.  

Once photobiomodulation has been optimized and readied for clinical use, it is likely that further work will be performed on not just cell cultures, but on in vivo stem cells and 3D structures of stem cells. In vivo refers to cells experimented on in live organisms, rather than in isolated cultures. In vivo stem cells come with the problem of difficult to control environmental conditions, but they more accurately simulate tissue conditions. Given additional advancements in bioprinting technology, stem cells in 3D structures like hydrogels have the potential for applications of light at different angles. However,  a wide array of new environmental variables would require many years of preparatory work to make up for a lack of current research. Theoretically, it may be possible for a 3D printed structure of stem cells in hydrogels to be selectively irradiated with light to grow more complex tissue formations. As such, photobiomodulation has several avenues for future research to explore as biotechnology  advances. 

Conclusion 

The remote control of stem cells has seen great advancements in the past five years, with  research on novel optical devices, a variety of wavelengths, cutting-edge manipulation methods,  and the production of two different categories of human stem cells. The field has even more potential in the future, especially through the combination of different research team’s work, through synthesizing the use of different wavelengths of light, UCNPs, and currently unrealized advances in biotechnology and nanotechnology. The concept of applying light to cells to control them is an appealing one, and the field will likely expand as methods become more standardized and easier to implement in molecular biology labs. The past five years of research have laid a solid foundation for future research into remote control of stem cell differentiation, and future advances may grant regenerative medicine immensely useful tools for treating traumatic injuries to the nervous system and musculoskeletal system.

 

References:

  1. National Spinal Cord Injury Statistical Center. Spinal Cord Injury Model Systems 2020. Accessed October 30, 2021. 
  2. Yamada M et al. 2020. Neurosci Res. 152:66-77
  3. Sofroniew MV & Vinters HV. 2010. Acta Neuropathol. 119(1):7-35.
  4. Mahla RS. 2016. Int J Cell Biol. 2016:6940283.
  5. Wang M et al. 2019. Biomaterials. 225:119539. 
  6. Yoon SR et al. 2021. 10(7):1664. 
  7. Wang Y et al. 2016. Sci Rep. 2016;6:33719. 
  8. Wang Y et al. 2017. Sci Rep. 2017;7(1):7781.
  9. Crous A et al. 2021. Biochimie. 2021;S0300- 9084(21)00183-8. 
  10. Zhang S et al. 2020.  Nanoscale. 2020;12(17):9833-9841. 
  11. Wang K et al. 2020. Nanoscale. 2020;12(18):10106-10116.
  12. Zhang Y et al. 2020.  ACS Appl Mater  Interfaces. 2020;12(36):40031-40041.
  13. Loo JF-C et al. 2019. Coordination Chemistry Reviews. 2019;400:213042.

Stem Cells: Miracle Cure or Hoax? A Review of Present Application and Potential Uses of Stem Cells

By Vita Quintanilla, Genetics 23’

Author’s Note: My purpose in writing this piece is to educate the current safe applications of stem cell as misuse and damage due to the same is so prevalent in the US and abroad. While not detracting from the great advances being made in the field currently this piece is to take stock of the reality of this treatment.

 

Large segments of the American and world population living with medical conditions that cause significant loss of mobility and quality of life are searching for hope in Stem Cell therapy.  The unfortunate reality is that many of these “therapies” are not only ineffective but potentially harmful and the clinics that distribute them are not always properly certified. While stem cell therapies are promising, run away hope for a miracle cure coupled with unethical advertising and untested procedures have caused patients in the United States and beyond to be harmed by a potentially life saving tool. Here we will examine the current state of stem cell investigation, treatment, US Regulation, prospects in the future of medicine, and information for consumers to consider in deciding to receive a stem cell treatment.

Stem cells are undifferentiated cells that are at the start of all cell lines. Embryonic stem cells come from the blastocyst, a small clump of cells that forms several days after conception, and are pluripotent, meaning that they can give rise to any cell type (except specific embryonic tissues not present out of utero). [1] While these are the most often referred to type of stem cells there are also multipotent stem cells that can only give rise to a specific kind of tissue and are present into adulthood. Somatic cells, or differentiated cells, can be reverted to a pluripotent state. Induced pluripotent stem cells (IPS) are a growing area of interest in the field as they carry with them the possibility of culturing tissues for transplant using the existing cells of a patient thus eliminating the possibility of rejection.[2]

IPS exemplify an unfortunate reality in the whole of stem cell research, that at present widespread stem cell therapies are not ready for the general public. While these cells have great potential, a major hurdle is the cost in both time and labor required to culture them in a safe and sterile environment. A single vial of research grade cells that will produce fewer than thirty colonies in five days under ideal circumstances can cost over 1,000 dollars. This does not include the cost of facilities, culture equipment, and labor making these therapies cost prohibitive as the resulting therapy can run as far as 10,000 dollars per treatment. [3&4] Furthermore, colonies of cells are far from fully developed tissues that could potentially be implanted. A patient in critical condition in need of a transplant likely cannot wait for the cells to grow into tissue in culture, even if they can afford it.

Difficulties in access however are not the greatest barrier to stem cell therapy, but rather the lack of widespread testing and approval for the treatment of the diverse conditions for which they are sometimes advertised.  While these cells are promising for usage in widespread areas of medicine, at present they do not live up to the claims that many unscrupulous clinics make for them. US Stem Cell Clinic, with a sleek website, and moving testimonials, advertises the use of stem cells as a magical cure that make the old feel young again using stem cells to treat a host of orthopedic maladies. These claims are highly suspicious as the FDA website says, as of January 2019, that only stem cell therapies for blood disorders are approved. [5]

These cells have been proclaimed cure-alls and medical miracles by the mass media but the reality is that the research into the application of stem cells for diverse ailments in humans is not conclusive at the present moment. [5]  The FDA only approves stem cell treatments for blood disorders using stem cells from umbilical cord blood or bone marrow, but many clinics are offering stem cell treatments for everything from vision problems to COPD. The FDA recently filed two complaints against US Stem Cell Clinic LLC in Florida and California Stem Cell Treatment Inc. for marketing stem cell products that do not have the proper approval and for having unsafe manufacturing conditions that compromised sterility and patient safety. Patients filed lawsuits against California based stem cell supplier Liveyon who sold umbilical cord stem cells contaminated with E. Coli that resulted in sepsis and several patient hospitalizations after the stem cells were used for unapproved treatments. [6]  In a recent lawsuit Florida based US Stem Cell was ordered to cease and desist, destroy all stem cells in their possession and pay for twice annual facilities inspections after taking cells from fat and injecting them into the eyes of patients causing five women to be blinded. In a 2018 statement FDA Commissioner Scott Gottlieb, M.D. said “We support sound, scientific research and regulation of cell-based regenerative medicine, and the FDA has advanced a comprehensive policy framework to promote the approval of regenerative medicine products. But at the same time, the FDA will continue to take enforcement actions against clinics that abuse the trust of patients and endanger their health” [7] The FDA, has in the past been accused of slowing down progress with novel treatments, but in the case of stem cells it is apparent that their actions hold patient safety as first priority, protecting the public from doctors and companies that value monetization over public health.

Patients in the United States have been harmed by these clinics including adverse injection site reactions, migration of cells to the improper location, the failure of cells to work in the desired way, and even the growth of tumors. Clinics that operate these studies may even be operating criminally as the FDA has pressed charges against these clinics in the past in the form of permanent injunction, an order to cease and desist permanently. [7]

Patients are often motivated to take these risky treatments because there is no other hope for a cure, however, unapproved treatments can make the condition worse or even lead to death. The dangers of receiving unapproved therapies is illustrated in the case of a 38-year-old man, who developed a spinal tumor after a stem cell treatment in preformed in Portugal where doctors injected cells taken from his nose into his spine. The treatment was attempting to cure paralysis in his legs and arms. It had no effect on his paralysis, but twelve years later the tumor that formed further limited his mobility and quality of life as his bladder control and motor function in arms steadily declined. Complications have been even more dire as a thirteen-year-old male in Israel who was treated at a clinic in Moscow for Ataxia telangiectasia, which affects the nervous system, died of a tumor that arose from donor cells. These are not isolated instances of unsuccessful treatment in patients that were already ill, the stem cells themselves were directly the cause of degeneration in the patients, and more than 19 deaths confirmed by the National Institute of Health as of 2018. [8&9]

Predatory clinics that perform these unapproved procedures can be especially hard to identify. Many have sleek well-designed websites with official looking personnel and lofty claims of unrealistic success rates and propositions for stem cells as cures for many diverse and at times totally unrelated disorders. Many clinics are located in Florida and Southern California however there are hundreds of clinics across the United States.  [10]*** Patients should be advised to do some research into these claims and check to see if the clinic in question as well as the treatment has FDA approval. A good strategy for determining the legitimacy of a clinic is to do research on the main doctors performing the procedure. If a clinic is claiming to be able to cure numerous unrelated and debilitating disorders, the doctors performing these procedures should be of high esteem in the community and have visible external measures to the importance of their work or the prestige of their practice. If this is not the case the patient should proceed with great caution.

The issue of deceptive stem cell clinics is not a mere issue of public health but an example of a greater problem, a break between scientific community and the public perpetuated by a few unscrupulous characters for the sake of profit. Stem cells have the potential to be life saving tools and usher in a whole new chapter of regenerative medicine, but if the reputation of this technology continues to be tarnished by clinics that do not abide by the laws and conventions put in place to keep consumers safe, this technology may never get an opportunity to reach its full potential.While stem cells have great potential for diverse treatments at some point in the future, at present their efficacy and safety for regenerative medicine has not been firmly established in the context of current technology. Not all stem cell treatments are to be feared, stem cell treatments for some blood disorders have been shown to be effective and safe. At some point in the future when culture and delivery techniques improve stem cells could revolutionize transplant and regenerative medicine.  At present the best course of action for consumers in regard to these therapies is to partake only in treatments or clinical trials operating with the approval of the FDA, and keep up with developments in the field by reading peer reviewed papers published in reputable journals. Exercise great caution but do not lose hope for the future. Stay current with research and, considering the risks and benefits, consumers may choose to enroll in FDA supervised clinical trials that adhere to the three phase clinical trial process, but always be sure to exclusively receive treatment from FDA regulated and approved clinicians.

 

Sources

  1. Yu, Junying, and James Thomson. “Embryonic Stem Cells.”National Institutes of Health, U.S. Department of Health and Human Services, 2016, stemcells.nih.gov/info/Regenerative_Medicine/2006Chapter1.htm. 
  2. “Home.” A Closer Look at Stem Cells, www.closerlookatstemcells.org/learn-about-stem-cells/types-of-stem-cells/.
  3. McCormack, Kevin. “Patients Beware: Warnings about Shady Clinics and Suspect Treatments.” The Stem Cellar, CRIM, 19 Jan. 2016, blog.cirm.ca.gov/2016/01/19/patients-beware-warnings-about-shady-clinics-and-suspect- treatments/.
  4. https://www.atcc.org/search?title=Human%20IPS%20(Pluripotent)#q=%40productline%3DL035&sort=relevancy&f:contentTypeFacetATCC=[Products]
  5. Office of the Commissioner. “Consumer Updates – FDA Warns About Stem Cell Therapies.” U S Food and DrugAdministration Home Page, Center for Drug Evaluation and Research, 16 Nov. 2016, www.fda.gov/ForConsumers/ConsumerUpdates/ucm286155.htm.
  6. William Wan, Laurie McGinley. “’Miraculous’ Stem Cell Therapy Has Sickened People in Five States.” The Washington Post, WP Company, 27 Feb. 2019, www.washingtonpost.com/national/health-science/miraculous-stem-cell-therapy-has-sickened-people-in-five-states/2019/02/26/c04b23a4-3539-11e9-854a-7a14d7fec96a_story.html.
  7. Commissioner, Office of the. “FDA Seeks Permanent Injunctions against Two Stem Cell Clinics.” U.S. Food and Drug Administration, FDA, 9 May 2018, www.fda.gov/news-events/press-announcements/fda-seeks-permanent-injunctions-against-two-stem-cell-clinics.
  8. Bauer, Gerhard, et al. “Concise Review: A Comprehensive Analysis of Reported Adverse Events in Patients Receiving Unproven Stem Cell-Based Interventions.” Stem Cells Translational Medicine, John Wiley & Sons, Inc., Sept. 2018, www.ncbi.nlm.nih.gov/pmc/articles/PMC6127222/#!po=19.4444.
  9. Flaherty, Brittany, et al. “Case Highlights the Risks of Experimental Stem Cell Therapy.” STAT, Staten News, 11 July 2019, www.statnews.com/2019/07/11/canada-case-long-term-risks-experimental-stem-cell-therapy/.
  10. https://usstemcellclinic.com/ [10]
  11. Commissioner, Office of the. “Step 3: Clinical Research.” U.S. Food and Drug Administration, FDA , 4 Jan. 2018, www.fda.gov/patients/drug-development-process/step-3-clinical-research.
  12. Hiltznik, Micheal. “Column: Judge Throws the Book at a Clinic Offering Unproven Stem Cell ‘Treatments’.” Los Angeles Times, Los Angeles Times, 26 June 2019, www.latimes.com/business/hiltzik/la-fi-hiltzik-stem-cell-injunction-20190626-story.html.

New Method Increases Supply of Embryonic Stem Cells

By: Varsha Prasad, Genetics ’15

A study to employ a new method of generating human embryonic stem cells without destroying any human embryos is currently being conducted by an international research team led by Karl Tryggvason, Professor Medical Chemistry at Karolinska Institutet and a Professor at Duke-NUS Graduate Medical School in Singapore.

The researchers developed a method in which embryonic stem cells can be obtained from a single cell of an eight-cell embryo, which can then be refrozen and placed in the woman’s uterus.  This prevents the need to destroy human embryos in the process.  The idea is that the embryo can survive a single cell removal. (more…)