Home » Posts tagged 'ucdavis' (Page 15)

Tag Archives: ucdavis

Want to Get Involved In Research?

[su_heading size="15" margin="0"]The BioInnovation Group is an undergraduate-run research organization aimed at increasing undergraduate access to research opportunities. We have many programs ranging from research project teams to skills training (BIG-RT) and Journal Club.

If you are an undergraduate interested in gaining research experience and skills training, check out our website (https://bigucd.com/) to see what programs and opportunities we have to offer. In order to stay up to date on our events and offerings, you can sign up for our newsletter. We look forward to having you join us![/su_heading]

Newest Posts

A History of Vaccines and How they Combat Disease

By Vishwanath Prathikanti, Political Science ‘23

Author’s note: The anti-vaccination movement has recently gained traction with many families across the nation and I wanted to tackle the idea of anti-vaccination and where it came from. I also wanted to see if there was any credit due to the anti-vaccinators and see if there was any truth to the idea that more vaccinations might be bad.

 

In April 2019, public health officials declared a measles outbreak in Los Angeles. To many, this sounded almost absurd; measles was eradicated in the United States in 2000 [4]. The outbreak highlighted the severity of a movement that many had declared irrelevant: the anti-vaccination movement. In light of this event, many had to question: what is the anti-vaccination movement? When did it begin? Is there any truth to the movement?

To understand the anti-vaccination movement, one must first understand vaccines and their history. Centers for Disease Control and Prevention (CDC) defines a vaccination as, “a product that stimulates a person’s immune system to produce immunity to a specific disease, protecting the person from that disease.” [1]. The human immune system uses white blood cells to fight infections in the body; specifically, there are three types of white blood cells that work together to fight infections: macrophages, B-lymphocytes and T-lymphocytes [2]. When a cell becomes infected or dies, it releases a chemical that attracts macrophages, which will engulf and degrade the cell. If the cell was damaged or died due to a virus or bacteria, the macrophage will leave behind antigens, which are recognized by the immune system as harmful [10]. When the immune system recognizes the antigens, B-lymphocytes will produce antibodies to attack the antigens and T-lymphocytes will attack cells in the body that have been infected by the identified antigen. After the infection is dealt with, the immune system will create memory cells that act immediately if the body encounters the same germ again. Vaccines work by imitating an infection; they do not cause illness but they will stimulate the production of T-lymphocytes, B-lymphocytes and memory cells to fight the disease in the future. Most vaccines require multiple doses to ensure full immunity, and how frequent these dosages are required depends on the vaccine [2]. 

Our knowledge of vaccines has not always been as vast as it is today. Evidence suggests that the earliest form of inoculation was in China during the late 1600s when emperor K’ang Hsi had his children inoculated after surviving smallpox (the process involved grinding smallpox scabs and inhaling them) [5]. The practice of vaccination has grown considerably since then, becoming vastly popular in the West by the 17th century. In 1853, Britain passed a law that made it mandatory for citizens to receive a smallpox vaccination and in 1855, Massachusetts passed the first U.S. law mandating vaccination for smallpox, allowing vaccinations to grow and develop. 

In the late 20th century, research on the negative effects of vaccines started to emerge. A 1995 study published in The Lancet linked the measles-mumps-rubella (MMR) vaccine with bowel disease. Wakefield, a gastroenterologist and researcher in the study, went on to further speculate that persistent infection with the vaccine caused disruption of the intestinal tissue that could lead to autism. This led to the study that would capture the attention of parents for decades to come. In 1998, Wakefield and his colleagues published a case series study in which, out of 12 children who had recently been administered their MMR vaccine, eight had the measles virus in their digestive system and were demonstrating symptoms for autism. Wakefield then went on to claim that the combined vaccination led to this, and advocated instead to adopt single-antigen vaccinations as opposed to combined MMR vaccines [3]. He did not, however, list how he came to this conclusion, saying “the combined measles, mumps, and rubella vaccine (rather than monovalent measles vaccine) has been implicated” [3].

The link between autism and the MMR vaccination was studied intensively over the next few years, and no reputable study ever found a similar link. Additionally, a study published in The Journal of Pediatrics, while acknowledging a slightly lower than average antibody count when the combined vaccination was employed, stated that there was no significant reason why single antigen vaccinations should be favored over combined vaccinations. The lower antibody count was deemed irrelevant in light of the fact that failure of the vaccine was extremely rare in fully immunized children [7]. In 2010, The Lancet formally retracted the paper, and three months later, Britain’s General Medical Council banned Wakefield from practicing medicine in Britain. Finally, in 2011, it was revealed that Wakefield had falsified most of his data; in his study, he reported eight children developed symptoms of autism when in reality, there were at most two cases. In addition, two of the children had developmental delays that were not mentioned in the final published work [3].

Despite the study being completely discredited by the scientific community, the damage to society had been done; after the Wakefield paper was published, vaccination rates dropped below 50 percent in some parts of London. Luckily, immunization rates drastically rose since then, with over 90 percent in the UK vaccinated in 2013, with BBC declaring a “universal recovery” [8]. Although vaccination rates are high, the US still faces about 60 cases of the measles every year, caused by international travelers who carry the disease [9]. While the spread of misinformation due to the Wakefield paper has mostly subsided, its legacy continues keeping a minority of children in the US unvaccinated and susceptible to antiquated and preventable diseases.

 

References

  1. Centers for Disease Control and Prevention “Immunization: the basics” https://www.cdc.gov/vaccines/vac-gen/imz-basics.htm
  2. Centers for Disease Control and Prevention “Understanding how vaccines work” https://www.cdc.gov/vaccines/hcp/conversations/downloads/vacsafe-understand-color-office.pdf
  3. History of Vaccines “Do vaccines cause autism?” https://www.historyofvaccines.org/content/articles/do-vaccines-cause-autism
  4. Centers for Disease Control and Prevention “History of measles”  https://www.cdc.gov/measles/about/history.html
  5. History of Vaccines “All timelines overview” https://www.historyofvaccines.org/timeline#EVT_1 
  6. Wakefield A, et al. RETRACTED:—Ileal-lymphoid-nodular hyperplasia, non-specific colitis, and pervasive developmental disorder in children. Lancet. 1998; 351(9103): 637-641. https://www.thelancet.com/action/showPdf?pii=S0140-6736%2897%2911096-0
  7. Heinz J. Schmitt, et al. “Primary vaccination of infants with diphtheria-tetanus-acellular pertussis–hepatitis B virus– inactivated polio virus and Haemophilus influenzae type b vaccines given as either separate or mixed injections.” The Journal of Pediatrics. 1999. https://www.sciencedirect.com/science/article/pii/S0022347600260885
  8. BBC “Measles outbreak in maps and graphics” 2013. https://www.bbc.com/news/health-22277186
  9. NPR “Fifteen Years After A Vaccine Scare, A Measles Epidemic” 2013. https://www.npr.org/sections/health-shots/2013/05/21/185801259/fifteen-years-after-a-vaccine-scare-a-measles-epidemic
  10. Arizona State University “Macrophages” https://askabiologist.asu.edu/macrophage

You might have to use more than a microscope, there’s more to genetics than what meets the eye: An interview with Dr. Gerald Quon

By Tannavee Kumar, Genetics & Genomics 20’

Author’s Note: As an undergraduate studying genetics and genomics and computer science, I wanted to interview a former professor to find out the steps he took in order to do computational research in the biological sciences. I was interested in finding out more about the growing field of computational biology and wanted to help shed light on a field to students that may be similarly interested. 

Background

You received a Bachelors in Math, then a masters in Biochemistry, then a PhD in Computer Science; did you always know that you wanted to do research in biology? If so, what made you want to start off with a technical education rather than something traditional like biology or chemistry? If not, how did you come to discover applications of computer science in Biology even 15 years ago?

No, I did not start off wanting to do anything related to biology. I started my undergrad thinking I would make computer games. How I kind of got into this was a week before my undergrad, I got an email from my university asking if I wanted to be a part of the first cohort of a bioinformatics program. I initially declined.

As I was looking for my third internship in my co-op program, I had a friend who found a job for a professor in Toronto, and my friend asked if I wanted to work on this cool project about predicting how proteins fold into these 3D structures. I told him I don’t know anything about protein structures, but sure! It was a lot of fun.

Is that what inspired you to pursue Biochemistry for further education?

I think that first internship was very pivotal, because it really nurtured my interest in protein structures. When I finished my undergrad, I was kind of bored of computer science, which is why I thought I would do a PhD studying protein structures.

How do you see life sciences research evolving and progressing in the coming years, given the inclusion of this new field?

In my opinion, we will see more and more blurring of boundaries. In 25 years, there is going to be more undergraduate programs less defined by walls like “life sciences,” “chemistry,” and better recognition that everybody borrows knowledge and skills from many fields. It will be very difficult to do a life sciences degree without learning anything about math or statistics. Similarly, more people in traditional quantitative disciplines will want to take those classes in the life sciences. Essentially there will be fewer walls.

How would undergraduates studying quantitative subjects, like mathematics, statistics, or computer science be made aware of the growing demand for such skills in the Life Sciences?

The classic way to become introduced to such areas would be through coursework, internship with a company, or research with a professor. The last two ways are not very optimal. At the end of the day, in a standard undergraduate program, you have summers, and if you are ambitious you can try to do research during the school year. However, you can only do so many different kinds of internships before you graduate. If you did one every summer of college, and even two before hand, even that would not be sufficient for getting a nice, representative sample for all the things you can work on. 

That is where universities need to do a better job of creating opportunities for students to engage with people from industry and research so that they don’t need 4-5 months to figure many essential things out. 

Research and Beyond

Can you briefly describe some of the research that your lab does?

We are currently working towards a few different directions. A large project at the moment is studying the genetics of mental disorders and neurodegeneration, for example we look at the genetics of Alzheimer’s disease, schizophrenia, autism, etc. Our main goal is to mechanistically understand how genetic variants associated with these mental conditions modify disease risk. Much of those mechanistic studies currently look at events that happen at the molecular level. This is great and very useful; however, since the majority of the research is geared at the molecular level we don’t have a good understanding of what variants do functionally at the level of the cell. How does it affect the functional properties of the cell, such as neuron electrophysiology? Or, how is the organization of the tissue affected? 

Other areas we work on are on building better models to understand how cells are spatially  organized in the brain, as well as building models that quantitatively describe cell population behavior. We know that cells behave differently when put into different contexts. It’s of interest to build a model to predict what happens when you put together different kinds of cells in different combinations, orientations, or conditions. 

Lastly, a third project being worked on is on the therapeutic end. We are essentially trying to identify the druggable region of the genome. There are a lot of computational problems in trying to determine what is druggable.                           

 How do you think the integration of the computational sciences has shed light on how biological processes are interconnected, and what do they make clear that a molecular approach may not be able to?

In human genetics, computational models play a huge role in hypothesis generation. They do a good job leveraging big data, such as genomics, to prioritize which variants should be tested using molecular approaches, for example, when molecular approaches are costly or too slow to systematically test many variants across a genome. The role of computation is parsing through the many possibilities that you can’t explore molecularly.

For example, a study we worked on four years ago was to try and find a causal variant for obesity. Most human genetic studies only point to a region of the genome where causal variants might hide, but don’t tell you exactly which one is the true causal one. When these regions are big, like hundreds of kilobases long, you need computational tools to identify the precise causal one to test experimentally. In that study, computational tools played the pivotal role of identifying the causal variant that was ultimately tested and shown to drive large changes in obesity risk.  

How does computational research like your own lead to the progression of curated care in the health industry?

At a superficial level, in some ways it accelerates some of the biomedical discoveries that are being done today. The obesity study is one example. If you didn’t have the computational resources, you would spend years and years trying to find the right variant. However, we found it relatively quickly with computation.

For healthcare specifically, fields such as machine learning are revolutionizing care today. People from statistics, computer science, and math are working directly with clinicians and hospitals to develop highly accurate ‘digital pathology’ software, they help predict when patients will need to come into the hospital or whether they are high risk for a disease.  

Oftentimes, conditions and diseases are misdiagnosed, which leads to inappropriate treatments. How would research in this area begin to remedy this common problem in the healthcare industry?

Most diseases are heterogeneous, which means that a group of people who are diagnosed with the same condition might actually have different underlying conditions, and need different treatments. Many computational approaches based on molecular and clinical data are being developed to identify more homogeneous groups of patients, to help achieve precision medicine. This allows for the most accurate prescription of medication and treatments. This is because these homogenous groups help identify the underlying disease phenotype which means access to better directed medication.

During your time as a PhD student, you also “explored the application of models built from deconvolving gene expression profiles, for personalized medicine.” Can you go more in depth to how these models were built and how it can advance our ability to provide a more accurate prognosis to patients?

During my PhD, we were trying to predict the prognosis of early stage lung cancer patients. If you are diagnosed with early stage lung cancer say stage 1B, clinicians have to make important decisions, such as how much e.g. chemotherapy to give you. If they give you too much, it will get rid of the primary tumor, but you will increase your risk of recurrence. But if you don’t give enough, you don’t get rid of the primary tumor. 

Back then, fourteen year ago or so, genome expression profiling was just becoming popular. People were thinking maybe we can predict whether these stage 1B patients were going to be at high risk of recurrence or not. Our motivation for that problem was essentially to build a computational model to predict based on molecular signatures if they should be given extra therapy or not. That in itself is a hard problem. Additionally, before single cell sequencing was available, it was hard to take a sample of a tumor and only sequence the tumor cells. Often times you would have contamination of normal cells that would mess up the signatures you would get. We had to develop a computational method to extract out only the signatures due to tumor cells, and show that once you do that it is much easier to predict prognosis.

Where do you think research will be in the next 10-20 years?

We are going to see a lot more connections across more previously isolated fields. For example, with respect to human psychiatric genetics, a lot of focus right now is at the molecular impact of genetic variants, but in the near future I’d expect there to be much closer integration with clinicians to also study the impact on behavior, and with the experimental biologists to study the impact on brain development and organization. 

 

***Special thanks to Dr. Gerald Quon for this interview

How Are California Bears Doing?

By Timur Katsnelson, Neurobiology, Physiology, and Behavior ‘19

Conservation biology has always been an interesting field to me. After having previously submitted two neuroscience-related articles to the Aggie Transcript, I decided to explore a new topic. The bear-sighting on campus last spring was on my mind, mainly because I began to wonder about the status of bears in our state. Given their symbolic status in California, I imagined that their conservation would be well-documented. This article serves as a brief report of the black bear’s current status in California, and the population genetics methods used by researchers keeping track of the animal.

 

Shortly before 6 a.m. on June 4, 2019, a very rare occurrence captured the attention of the entire Aggie community. A young, male black bear was spotted wandering near the UC Davis Arboretum’s Redwood Grove [4]. The campus police and fire departments, in conjunction with California’s Department of Fish and Wildlife (CDFW), worked to tranquilize the straggler and release him to the nearest habitat west of the city of Davis. This moment of excitement on campus sparked the curiosity of many who care about wildlife and conservation. According to CDFW, black bear populations have been on the rise over the past quarter-century, so what are the challenges the species face and how do biologists keep track of populations? It is also important to evaluate the evolutionary track of the species to understand if it can withstand changing environments, so what is the genetic diversity of the state’s population of black bears?

California’s history with bears is complicated. Many sports teams in the state are fondly named after them and, most notably, a prominent grizzly roams a patch of grass on the state’s flag. While it is a cherished symbol of the state, the grizzly faced a savage end to its reign as apex predator. The Spanish threw the bears in fights to the death against bulls and dogs, and later American settlers hunted them into oblivion. The last California grizzly was seen in 1924 and has since been extinct [2]. Nearly one hundred years later, environmentalists are aspiring to reintroduce the grizzly bear through back-breeding, cloning, or genetic engineering [2]. Many might consider these to be aspirational long-term goals, and in the meantime have focused on the current population of bears in the state. What is known for sure is that the absence of the grizzly in the state has opened up more room for a different population to flourish [5]. 

The real challenge in the many decades since the last grizzly has been observing and managing the population of California black bears. Unlike their phylogenetic cousins, black bear populations still exist in the state and are relatively stable. The department estimates that between 25,000 and 30,000 black bears occupy 52,000 square miles in California. There are three subpopulations of the bears which are recognized as the North Coast/Cascade, Sierra, and Central Western/Southwestern regions. Unsurprisingly, about half of the state-wide population of black bears resides in the North Coast/Cascade region [1]. 

In 2016, a population genetics study of California Black Bears was published by the CDFW in conjunction with the Wildlife Population Health and Genetics Laboratory at the UC Davis School of Veterinary Medicine. The study analyzed the Central Western subpopulation, specifically in Monterey and San Luis Obisbo counties and compared genetic samples to bears in Mono County, which is between Yosemite National Park and the border with Nevada. Research of this sort evaluates abundance of the species and the genetic diversity of small populations to predict migrating patterns, check for genetic bottlenecking and inbreeding, and to examine the overall strength of the genetic pool [3].

One way researchers acquired genetic material was through a hair sampling technique. Two rungs of barbed wire were tied around a circle of trees. At the center of this sample area was fish bait and a sweet scent bait made of honey and berries. As bears approached the bait, their hair would get caught in the wires. The spacing of each sample station was strategically determined from a grid design that considered habitable ranges for the bears and safe distances from human-related dangers such as roads and watch points. DNA extraction and further genotyping was used to identify unique individual bears. From there, most of the work came from computer-programmed statistical tests such as Bayesian genetic clustering algorithms to evaluate the population structure for each data range [3]. 

Researchers have come to believe that the central coastal population of bears has been in the region for about 50 years and are descendants of the population in the Sierra region that have migrated towards the coast. The report concluded that there are very few bears populating in Monterey County because there has not been enough time for them to disperse adequately within the coastal region. A potential reason for their slow migration towards Monterey County could be urbanization and the construction of highways that provide real physical barriers [3]. 

A 2009 study (Brown et al.) by researchers at the UC Davis School of Veterinary Medicine also analyzed the population genetics of California’s black bears, this time on a statewide scale. Using historical documents to track translocations of bears by humans, but also the analysis of microsatellite DNA from subpopulations of the bears, the researchers came to similar conclusions as the aforementioned CDFW report. It is believed that the extinction of the California grizzly, which roamed a significant portion of the state’s central coast, made room for the black bear to begin to inhabit regions such as Monterey and San Luis Opisbo [5]. Brown et al. used genetic samples from 540 bears, which were collected between 1990 and 2004 throughout the state. To determine the genetic structure of the California populations, the group used a computer program that “groups individuals into clusters based on genotype without consideration of sampling geography.” Following this, the determined clusters were tested for Hardy-Weinberg equilibrium, one of a handful of tests for genetic populations. This is an evaluation method that assumes no evolutionary changes are taking place in the genetic pool. Doing this makes it possible to simply analyze the allelic frequencies within the population without accounting for potential changes. 

Wildlife management is an increasingly important and difficult operation for any organization. Urbanization and global climate change will certainly become more prominent issues in black bear conservation. This is not even considering the laws on hunting or other policy-related challenges that may arise. The CDFW, in conjunction with researchers from around the state, has made a concerted effort to observe this population. If we are to learn a lesson from the past, it would be to not take for granted the abundance of the bear population in California. There has been a lot of excitement about the black bear’s proliferation, but our state will need to be attentive if we are to keep the health of our wildlife in balance. 

 

References

    1. California Department of Fish and Wildlife “Black Bear Biology” https://www.wildlife.ca.gov/Conservation/Mammals/Black-Bear/Biology
    2. Los Angeles Times “Column: Will the California Grizzly Make a Comeback?” https://www.latimes.com/opinion/op-ed/la-oe-arellano-grizzlies-20180718-story.html
    3. Sherman et al., “Population Genetics Study of California’s Black Bears” https://lpfw.org/wp-content/uploads/2017/02/Sherman-Ernest-CDFW-Final-Report-Population-Genetics-Study-of-California%E2%80%99s-Black-Bears.pdf
    4. UC Davis “Bear Caught in the Morning, Freed 5 Hours Later” https://www.ucdavis.edu/news/bear-caught-morning-freed-5-hours-later/ 
    5. Brown et al., “Black Bear Population Genetics in California: Signatures of Population Structure, Competitive Release, and Historical Translocation” Journal of Mammalogy https://doi.org/10.1644/08-MAMM-A-193.1

Genetically Engineered Crops: A Food Security Solution?

By Roxanna Pignolet, Biochemistry and Molecular Biology 20’

Author’s Note: Since I started working on plant metabolites as an undergraduate researcher in the Shih Lab, I’ve developed a great appreciation for the power of plant genetic engineering to address a wide variety of problems. A uniquely global and increasingly relevant concern is how to continue to feed the world’s growing population in the face of climate change. I decided to write this paper to provide a snapshot of the current research being done to innovate crop species that will survive in the face of climate change. As part of this review. I also wanted to address ongoing concerns about the safety and impact of GMOs on consumers and the environment, and whether these genetic engineering strategies have the potential to make a positive impact on food security.

 

Introduction

As the world population continues to rise, climate change is also having an increasingly large impact on agriculture in the form of rising temperatures and intensified weather variations. Population growth is challenging researchers and farmers to find new ways to increase crop yields without access to more land or freshwater. Population is expected to increase from the current 7.7 billion to 9 billion by 2050 (1,2). However, it was found in 2000 that about 70% of the available freshwater was already in use. Meanwhile, climate change is introducing new challenges to crop productivity and stability. By 2050, the global crop demand may increase as much as 110%, which emphasizes the need for new, powerful strategies for crop improvement.

Genetically engineered crops have been used in agriculture since the mid-1990s, and have been instrumental in overcoming serious agricultural challenges such as disease outbreaks and overuse of toxic insecticides (3). In contrast to traditional breeding, genetic engineering allows for a direct transfer of one or more genes of interest from either closely or distantly related organisms. In some cases, a plant is modified solely by turning on or off one of its own genes (4). These methods allow for fast and precise changes that target a specific trait. Since their introduction, numerous studies have measured their potential for health and environmental risks, as well as their benefits. This review will discuss the impacts of genetically engineered crops from an environmental and health perspective. Additionally, I will look at how genetically engineered crops are currently being applied to address food security concerns in the face of climate change.

 

What is the Impact of Genetically Engineered Crops?

Environment

As genetically engineered crops have now been used in the field for many years, the environmental impacts can be assessed. The most abundant type of genetically engineered crops are insect resistant crops, specifically Bacillus thuringiensis (Bt) resistant corn and cotton. Bt is a soil bacterium which produces proteins that are toxic to certain insects (5). Bt crops have been modified to produce Bt genes as protection against specific pests (3). These crops have been grown commercially since 1996 (2), which has allowed long term environmental studies to be conducted. In a two-year field trial on the impact of transgenic maize on soil fauna, Fan et al. found that there was no impact on biodiversity, abundance or composition of the soil fauna. They compared samples taken in varying conditions from either transgenic maize or non-transgenic maize controls. The researchers found that the insecticide transgene did not affect the soil ecosystem, while factors such as time of year, pH, sampling time, and root-biomass all had significant effects (6). In a 2003 review on Bt crops, Mendelsohn et al. also found that there were no negative impacts observed on species of endangered insects, earthworms, or non-target insects. However, one negative that applies to all insecticides is that pests will eventually gain resistance. Engineering crop varieties to have several different resistance genes has been shown to slow this process (2).

Another class of genetically modified crops that are currently in use are herbicide-tolerant crops. Herbicide-tolerant crops are designed to be tolerant to broad-spectrum herbicides that can be used to control surrounding weeds. Use of herbicide-tolerant corn and soybeans has been shown to decrease the use of highly toxic herbicide sprays in favor of an amino-acid derived, non-toxic alternative (Roundup), and has also encouraged low-till farming practices which have been correlated to significant reductions in greenhouse gasses (2). Weed resistance is a concern with herbicide-resistant crops, especially when a single herbicide gene is overused. In some cases, high selection pressures caused by overuse of a single broad-spectrum herbicide have led to resistant weeds. If unchecked, these resistant weeds can spread across farms and negatively impact crop growth (7). New varieties of crops resistant to multiple types of herbicides should help mitigate this problem by allowing farmers to rotate several types of herbicides. A widespread adaptation of these new varieties and consistent practice of sustainable herbicide application will be important to avoiding negative outcomes of herbicide-tolerant crop use.

Implementing these genetically engineered crops has contributed to overall decreases in the amount of toxic insecticide and herbicide sprayed. Just as with chemical pesticide and herbicide sprays, proper steps must be taken with insect-resistant or herbicide-resistant crops to delay resistance in the affected insect or weed. These steps include rotating planting of herbicide-resistant crops and using weed control tactics with different modes of action to avoid putting high selection pressure on one type of resistance.

Health

The consensus from long term studies carried out to address biosafety concerns of genetically modified crops, is that they are just as safe as their natural counterparts. Genetically engineered crops are subjected to a variety of tests on a case by case basis before they are implemented, and now long term data shows that there have been no side effects from possible unintended chemical compositions of crops, making them just as safe as those derived from traditional breeding. There are, however, concerns about next generation genetic engineering, which targets regulator genes instead of a single functional gene. Targeting regulator genes could allow scientists to target plant stress response pathways, and engineer plants to have multiple desirable traits (8). Additional research must be conducted to assess the plant-wide changes caused by affecting a player in a signaling cascade.

New Approaches to Crop Improvement

While the current genetically engineered crops have been found to have a positive effect on crop yields, the increases are not enough to keep up with projected population growth. Additionally, climate change is predicted to cause stressors to crops such as drought, rising temperatures, and weather variations among other things (2). Therefore, scientists are looking for new and creative genetic engineering techniques to create robust and high-yielding crops for our future.

One of the main targets for genetically engineered crops is adaptions to grow and produce quality yields under higher temperatures. In a study investigating the genes responsible for creating lower quality, chalky rice grains under high temperature conditions, Nakata et al. looked at the role of a starch metabolizing enzyme, known as amylase, in the packing of starch into rice grains. Their team used transgenic rice modified with a reporter gene attached to each isotype of the amylase gene. By comparing the activity of plants overexpressing each variety, they were able to identify specific amylase genes as targets for genetic modification. Rice variants with these modifications would remain higher quality, with tightly packed starch, even if grown under non-optimal higher temperatures (9). Another study tested the responses of a previously created transgenic rice line called HOSUT under high amounts of carbon dioxide (CO2), a heat wave, and nitrogen enriched conditions. They found that the transgenic line, which has enhanced sucrose transport, has a superior yield than the control line (Certo), and that increased CO2 conditions resulted in higher yields in Certo with only minimal increases for HOSUT. They concluded that the minimal response of HOSUT to the increased CO2 was indicative of HOSUT already being saturated due to its optimized transport capabilities. The HOSUT line is already optimized for translocation of carbon, which they were able to show by increases in starch in the grains in HOSUT only. HOSUT also produced more yield in response to increased nitrogen, making it a good option for producing high rice yields under variable climate change conditions (10) The HOSUT line is a great example of how genetic engineering can be used to fortify and optimize crops to both survive under atypical conditions and produce enough yield to keep up with demand.

Another problem that researchers are addressing through genetic engineering, is drought. Selvaraj et al., developed and field tested two drought tolerant rice lines, created by introducing an Arabidopsis stress response gene (galactinol synthase) with a maize promoter. Galactinol synthase produces galactinol, a sugar that functions as an osmoprotectant, keeping water from leaving the cells. These galactinol synthase genes were introduced into two commercially available rice lines and tested in the field under drought and well-watered conditions. Under drought conditions, the collection of galactinol resulted in higher grain yields, while under well-watered conditions no significant yield increase was observed. Galactinol is a sugar that functions as an osmoprotectant, keeping water from leaving the cells. The results of these field trials show that these rice lines are ready to be integrated into ongoing breeding programs (11). Wang et al. also tackled the problem of drought stress caused by global warming on fruit such as apple trees. They transgenically expressed an aquaporin gene found in Fuji apples that has increased expression during fruit growth in tomato. The transgenic plants did have an increased drought tolerance, observed as an increased sensitivity of their stomata to water loss, and a larger fruit size when compared to wild type. This research will be continued in apples next with the goal of producing plants with larger fruits when well-watered, which will also be more tolerant to drought due to increased water transport efficiency (12).

A third target for genetic engineering solutions is circadian rhythms. Understanding and controlling circadian rhythms in crop plants has the potential to adapt plants to radically different environments. One group at the Guru Jambheshwar University of Science and Technology is tackling this challenge in rice. This group expressed an Arabidopsis transcription factor known as Circadian Clock Associated1 (CCA1) under the Timing Of Cab Expression 1 (TOC1) promoter, which are both part of the circadian clock machinery in Arabidopsis. They found that overexpression of the CCA1 in rice had negative results, while repressing it caused positive changes to plant morphology. The researchers used RNAi, which is a biological process where small fragments of RNA are used by the cell to target complementary mRNA for destruction, thus silencing expression of the encoded protein. By comparing RNAi constructs based off of three different parts of the CCA1 gene for silencing the gene expression, they found that the RNAi derived from the 3’-terminal end of the CCA1 gene had the best impact on plant morphology (13). This study is an important first step towards unlocking the power of using circadian clock genes to breed plants better adapted to a changing environment.

One new strategy being considered is a CRISPR/Cas9 genome editing method that could be used to quickly develop improved crop varieties without transgenes. CRISPR/Cas9 can introduce specific changes into a plant genome without being limited by existing variation. Applying this method, scientists will be able to stack multiple edits into a plant within a single generation, resulting in transgene-free progeny. One benefit of this method is that it may allow for more complex changes to polygenetic traits or signaling pathways. For example, this could be helpful for targeting complex plant stress response pathways. This technology is currently limited by the availability of annotated reference genome sequences for plants other than Arabidopsis. Scheben et al. suggest that taking a genomics-based approach would allow for a comparison of species-wide genome diversity, making differences in copy-number visible and thus available for editing. While the authors suggest that this method creates plants that are indistinguishable from those created through natural breeding and random mutations, bans against genetically modified crops may target methodologies rather than the final result (14).

 

Conclusion

Currently implemented genetically engineered crops, have been shown, through years of testing and trials to be at least as safe, both towards the environment and in terms of human health, as naturally bred varieties. While new transgenic lines must be screened and tested on a case-by-case basis, the overall benefits of this technology make it an important tool that may be necessary to confront upcoming challenges to agriculture. Climate change and population growth are putting steep demands on crops to survive in more hostile environments while also producing higher yields. Current efforts are focusing on vital crops, such as rice, corn, wheat, and fruits, to create drought-tolerant, heat-tolerant, and yield-optimized plants.

 

References

  1. “World Population Clock: 7.7 Billion People (2019) – Worldometers.” n.d. Accessed November 18, 2019. https://www.worldometers.info/world-population/.
  2. Ronald, Pamela. 2011. “Plant Genetics, Sustainable Agriculture and Global Food Security.” Genetics; Bethesda 188 (1): 11–20.
  3. Mendelsohn, Mike, John Kough, Zigfridais Vaituzis, and Keith Matthews. 2003. “Are Bt Crops Safe?” Nature Biotechnology 21 (9): 1003–9. https://doi.org/10.1038/nbt0903-1003.
  4. “Genetic Engineering and GM Crops | ISAAA.Org.” n.d. Accessed November 18, 2019. https://www.isaaa.org/resources/publications/pocketk/17/default.asp.
  5. “Bacillus Thuringiensis (Bt).” n.d. Accessed November 18, 2019. http://npic.orst.edu/ingred/bt.html.
  6. Fan, Chunmiao, Fengci Wu, Jinye Dong, Baifeng Wang, Junqi Yin, and Xinyuan Song. 2019. “No Impact of Transgenic Cry1Ie Maize on the Diversity, Abundance and Composition of Soil Fauna in a 2-Year Field Trial.” Scientific Reports 9 (1): 1–9. https://doi.org/10.1038/s41598-019-46851-z.
  7. Resources, University of California, Division of Agriculture and Natural. n.d. “Herbicide Tolerance.” Accessed November 18, 2019. http://sbc.ucdavis.edu/Biotech_for_Sustain_pages/Herbicide_Tolerance.
  8. Ortiz, R., Andy Jarvis, P. Fox, Pramod K. Aggarwal, and Bruce M. Campbell. 2014. “Plant Genetic Engineering, Climate Change and Food Security.” Working Paper. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). https://cgspace.cgiar.org/handle/10568/41934.
  9. Nakata, Masaru, Yosuke Fukamatsu, Tomomi Miyashita, Makoto Hakata, Rieko Kimura, Yuriko Nakata, Masaharu Kuroda, Takeshi Yamaguchi, and Hiromoto Yamakawa. 2017. “High Temperature-Induced Expression of Rice α-Amylases in Developing Endosperm Produces Chalky Grains.” Frontiers in Plant Science 8. https://doi.org/10.3389/fpls.2017.02089.
  10. Weichert, Heiko, Petra Högy, Isabel Mora-Ramirez, Jörg Fuchs, Kai Eggert, Peter Koehler, Winfriede Weschke, Andreas Fangmeier, and Hans Weber. 2017. “Grain Yield and Quality Responses of Wheat Expressing a Barley Sucrose Transporter to Combined Climate Change Factors.” Journal of Experimental Botany 68 (20): 5511–25. https://doi.org/10.1093/jxb/erx366.
  11. Selvaraj, Michael Gomez, et al. “Overexpression of an Arabidopsis Thaliana Galactinol Synthase Gene Improves Drought Tolerance in Transgenic Rice and Increased Grain Yield in the Field.” Plant Biotechnology Journal, vol. 15, no. 11, Nov. 2017, pp. 1465–77. PubMed, doi:10.1111/pbi.12731.
  12. Wang, Lin, Qing-Tian Li, Qiong Lei, Chao Feng, Xiaodong Zheng, Fangfang Zhou, Lingzi Li, Xuan Liu, Zhi Wang, and Jin Kong. “Ectopically Expressing MdPIP1;3, an Aquaporin Gene, Increased Fruit Size and Enhanced Drought Tolerance of Transgenic Tomatoes.” BMC Plant Biology 17, no. 1 (December 19, 2017): 246. https://doi.org/10.1186/s12870-017-1212-2.
  13. Chaudhury, Ashok, Anita Devi Dalal, and Nayan Tara Sheoran. 2019. “Isolation, Cloning and Expression of CCA1 Gene in Transgenic Progeny Plants of Japonica Rice Exhibiting Altered Morphological Traits.” PLOS ONE 14 (8): e0220140. https://doi.org/10.1371/journal.pone.0220140.
  14. Scheben, Armin, Felix Wolter, Jacqueline Batley, Holger Puchta, and David Edwards. 2017. “Towards CRISPR/Cas Crops – Bringing Together Genomics and Genome Editing.” New Phytologist 216 (3): 682–98. https://doi.org/10.1111/nph.14702.

Merging Amputees with their Prostheses

By Brooke B., Computer Science/Design ’22

Author’s Note: As a computer science major, I have always been interested in the concept of an algorithm that can communicate with the brain through manufactured nerve signals. I read about this research in the news and I thought it was a great example of the marriage of biology and computer science, as well as how the two together can improve lives. I wrote this news article in hopes to reach more of the general public to shed light on the strides we’re making in prosthetic technology.

New research was published early October 2019 in Science Translational Medicine with the first prosthesis augmented by sensory feedback for above-the-knee amputees.¹ The findings have helped amputees achieve greater control over their prosthetic limbs. One participant in the clinical study reported feeling as if their prosthesis was their real leg again: “After all of these years, I could feel my leg and foot again, as if it were my own leg,” Djurica Resanovic said, “You don’t need to look at where your leg is to avoid falling.”

Swiss companies ETH Zurich and SensArs Neuroprosthetics developed the sensory feedback technology to improve prosthetic devices. Seven sensors detect signals along the foot of the artificial leg prototype, and one sensor detects the angle of flexion from the knee. These communicate via Bluetooth to an electric conductor, called an electrode, surgically implanted into the stump’s tibial nerve. Co-author of the publication and SensArs Neuroprosthetics co-founder Silvestro Micera has found the approach of piercing an electrode through the nerve rather than wrapping around it to be efficient in other studies performed for bionic hands. The sensors on the limb receive spatial information when moved, which are translated into biosignals by the team’s new algorithm. The electrode implanted to the neuron receives the signals and sends the information through the nervous system to be received at the brain for processing. The better integration of the prosthesis to the body depends on the accuracy of these electrical signals, and how closely they resemble those a real leg would have produced. 

Three amputees participated in a clinical trial over a period of three months to test the new technology. “We showed that less mental effort is needed to control the bionic leg because the amputee feels as though their prosthetic limb belongs to their own body,” explained Stanisa Raspopovic, an ETH professor who led the study. “…the feedback is crucial for relieving the mental burden of wearing a prosthetic limb which, in turn, leads to improved performance and ease of use.” 

Even blindfolded and wearing earplugs, participants were able to feel their prosthetic prototype. With the improved awareness of the limb in space, navigating through obstacles required less effort and as a result, subjects fell less. With no stimulation in the limb, the average ratio of falls to obstacles was 39 percent, as opposed to the ratio of eight percent with the stimulated prosthesis. On a test with stairs where subjects were tasked with completing laps, the average amount completed with the new technology was 2.28, as opposed to an average of 1.67 laps without it. Additionally, the brain appeared to be less burdened by the prosthesis, exhibiting lower amplitudes in acoustic event-related potentials tests.² These tests pick up small voltages the brain gives off in response to stimuli, thus a lower reading would indicate less mental stimulation involved in maneuvering with the prosthesis.³ Consequently, more focus can be devoted towards other tasks within the amputee’s life.

Silvestro Micera believes the intraneural electrodes implemented in this research hold vast prospects in neuroprosthetic applications. “We believe [they] are key for delivering bio-compatible information to the nervous system… Translation to the market is just around the corner.” 

 

References

  1. Ecole Polytechnique Fédérale de Lausanne. “Amputees merge with their bionic leg.” ScienceDaily. ScienceDaily, 2 October 2019. <www.sciencedaily.com/releases/2019/10/191002144243.htm>.
  2. Francesco Maria Petrini, Giacomo Valle, Marko Bumbasirevic, Federica Barberi, Dario Bortolotti, Paul Cvancara, Arthur Hiairrassary, Pavle Mijovic, Atli Örn Sverrisson, Alessandra Pedrocchi, Jean-Louis Divoux, Igor Popovic, Knut Lechler, Bogdan Mijovic, David Guiraud, Thomas Stieglitz, Asgeir Alexandersson, Silvestro Micera, Aleksandar Lesic and Stanisa Raspopovic. Enhancing functional abilities and cognitive integration of the lower limb prosthesis. Science Translational Medicine, 2019 DOI: 10.1126/scitranslmed.aav8939
  3. Sur, S., & Sinha, V. K. (2009). Event-related potential: An overview. Industrial psychiatry journal, 18(1), 70–73. doi:10.4103/0972-6748.57865

Novel Pathway Elucidates Potential for Nitric-Oxide Produced by Tumor-Associated Macrophages to Confer Resistance to Chemotherapy Drug Cisplatin

By Reshma Kolala, Biochemistry & Molecular Biology ‘22

Authors Note: This past summer I was given the incredible opportunity to work in the Thurmond Lab at the City of Hope where I investigated a point mutant of the Syntaxin 4 protein on -cell function and apoptosis. The following piece reviews a publication that was fundamental to both the understanding and methodology of my project. 

 

Introduction

Cisplatin (CDDP) is a widely used chemotherapy drug that induces apoptosis in solid tumor cells, which are cells that lack cysts or liquid areas such as carcinomas, sarcomas, and lymphomas. The platinum-based chemotherapeutic agent was popularized in the late 1970s as the antitumoral toxicity of platinum compounds became known for their clinical efficacy against solid tumors (1). Although initially promising, many patients suffer a relapse due to the development of cisplatin resistance, largely as a result of their ability to overcome the apoptogenic effects of the drug. To elucidate the underlying mechanisms behind the propagation of cancer progression and chemotherapy resistance, an understanding of the tumor microenvironment is crucial. The tumor microenvironment is comprised of a complex and dynamic milieu that surrounds stromal cells. Among these cells, tumor-associated macrophages (TAMs) represent the largest population of infiltrating inflammatory cells in malignant tumors. TAMs have been suggested to possess a tumor-promoting phenotype that drives multiple mechanisms, most notably tumor cell proliferation and drug resistance (2). Initially, TAMs are in the classically-activated M1 state, in which their proinflammatory characteristics disables tumor growth. As tumors mature, however, they switch to an alternatively-activated M2 state, promoting tumor development and immunosuppression. As M2-like TAMs are major contributors to chemotherapeutic resistance, they are frequently targeted for cancer immunotherapies. 

M2-like TAMs are capable of producing nitric oxide (NO) via expression of inducible NO synthase (iNOS). NO is an important cell signaling molecule that is critical for many physiological processes such as neurogenesis and angiogenesis (3). At low levels, NO displays cytoprotective properties, promoting tumor growth, but can be cytotoxic to tumor cells when produced at high levels (4). The cytoprotective tendency of NO has been linked to the inhibition of the sphingomyelin-metabolizing enzyme acid sphingomyelinase (A-SMase). Traditionally, the activation of A-SMase (most commonly by chemotherapeutic drugs such as CDDP) drives the hydrolysis of sphingomyelin to generate ceramide. Ceramide, in coalition with other molecules, forms a cluster that drives transmembrane signaling of apoptotic death to effectively kill tumor cells (5). By contrast, it has been found that at relatively low concentrations NO hinders the beneficial apoptotic effect of A-SMase, resulting in resistance to the chemotherapeutic drug CDDP. The elucidation of this mechanism is the focus of research conducted by Perrotta et al. in 2018. 

A study led by Perrotta et al. investigated the potential for NO, a byproduct of TAMs, to be responsible for the mechanism conferring resistance to CDDP (6). An increased concentration of intracellular NO leads to the activation of the membrane-bound protein Syntaxin 4 (STX4) via a pathway that involves the production of cGMP and activation of protein kinase G (PKG). As STX4 aids in the translocation of A-SMase, an enzyme involved in apoptosis, to the plasma membrane, a decrease in the STX4 protein would result in resistance to the intended apoptotic effect of CDDP (Figure 1). However, it was found that a point mutant of the STX4 protein, namely the STX4-S78A mutant, is unable to be phosphorylated by PKG due to the chemical nature of the alanine side chain. This prevents proteasomal degradation, thus leading to successful tumoral apoptosis.

Figure 1: Nitric Oxide (NO)-Mediated Resistance to Apoptotic Effect of Cisplatin

A schematic of the Nitric Oxide-mediated resistance to chemotherapeutic drug CDDP. The introduction of CDDP (1) leads to an increase in the intracellular concentration of NO in TAMs (tumor associated macrophages). (2). This leads to the generation of cGMP via the cGMP pathway (4). This leads to PKG activation (5) and results in STX4-WT phosphorylation at Ser-78 residue (6a) to ultimately allow degradation of STX4 via the proteasome. The STX4-S78A mutant however, cannot be phosphorylated (6b), preventing STX4 degradation by proteasomes. If left intact, the STX4 protein mediates the binding of A-SMase to the plasma membrane (7), resulting in tumor cell death (8).

 

Methodology & Results

The presence of M2 polarized TAMs in U373 human glioma cells were confirmed through immunostaining of the M2 subtype marker CD206 and iNOS. The presence of double positive cells illustrated the ability for M2-TAMS in glioma cells to produce NO. To investigate the effect of CDDP-induced apoptosis, human glioma cells were cocultured with M2-TAMs and then treated with CDDP in the presence of the iNOS inhibitor L-NAME. Annexin V apoptosis staining data illustrated a three-fold decrease in tumor cell death when CDDP-treated U373 glioma cells were cocultured with M2-TAMs. However, the addition of L-NAME resulted in a roughly two-fold increase in the abundance of dead tumor cells. Similar results were observed in the GL261 murine cells. This demonstrates that NO induces resistance to the apoptotic effect of CDDP as the inhibition of the NO precursor iNOS resulted in increased efficacy of the CDDP treatment. 

The NO pathway operates via activation of the cGMP pathway. This was confirmed by administration of ODQ, a guanylate cyclase inhibitor that prevents NO-dependent cGMP generation, and DETA-NO (an NO donor) to U373 cells treated with CDDP. Results indicated a roughly two-fold increase in the percentage of apoptotic cells when treated with cGMP inhibitor ODQ, illustrating that the cGMP pathway is a significant contributor to CDDP. The generation of cGMP is correlated with the inhibition of CDDP-induced apoptosis, therefore, the presence of a cGMP inhibitor (ODQ) should increase levels of apoptosis, which is reflected in the data. 

It has been previously demonstrated that acid sphingomyelinase (A-SMase) is activated by CDDP. A-SMase activation often occurs via translocation to the plasma membrane, therefore a cell surface biotinylation assay was used in U373 to confirm increased expression of A-SMase at the plasma membrane 30 minutes post-CDDP treatment. As expected, western blotting data indicated heightened expression of the enzyme when compared to A-SMase expression in U373 cells treated either with DETA-NO or 8Br-cGMP (an activator of cGMP-dependent kinases).

The final step of the pathway conferring resistance to CDDP involves the phosphorylation of Syntaxin 4 (STX4). STX4 is a membrane-bound SNARE protein. SNARE proteins form a SNARE core complex that orchestrate vesicle fusion to the plasma membrane. In tumor cells, STX4 is known to control the trafficking of A-SMase from intracellular compartments to the plasma membrane, allowing the A-SMase to carry out the intended apoptotic effect of CDDP. However, data shows that the phosphorylation of STX4 at the Ser-78 residue promotes its subsequent proteasomal degradation. 

 

Conclusion 

It has been found that NO released by M2-polarized TAMS has led to resistance against a widely used chemotherapy drug CDDP. This is achieved via the generation of cGMP and the activation of PKG in response to increased intracellular concentrations of NO. This leads to phosphorylation of the STX4 protein at Ser-78, resulting in its degradation. The decrease of the STX4 protein immobilizes A-SMase, preventing the enzyme from reaching the plasma membrane to initiate tumoral apoptosis.

As previously mentioned, the effect of NO in large quantities yields cytotoxic properties. In smaller concentrations however, NO has exhibited protective effects. The dichotomous behavior of NO on tumor biology could be a result of a myriad of factors, including the conditions of the tumor microenvironment and its origin. The generation of NO by TAMs protects tumor cells from apoptosis through the indirect inhibition of A-SMase activity. It is important to note that this action is dependent on the ability of NO to generate cGMP in tumoral cells and block the CDDP-induced, STX4-dependent translocation of A-SMase to the plasma membrane.  

The elucidation of a chemotherapeutic resistance mechanism provides an understanding of Cisplatin’s efficiency and the origin of its drug-resistant tendencies. The observed proteasome-dependent degradation of STX4 may also be relevant to cancer therapies based on proteasome inhibitors. Prevention of the proteasomal degradation mechanism would increase efficacy of many chemotherapeutic treatments. This is due to the preservation of pro-apoptotic factors which would permit the programmed cell death of various proteins, preventing the accumulation of deleterious proteins. Currently, proteasome inhibitors are approved for treating multiple myeloma, a cancer of plasma cells or cells that produce antibodies. As NO is a major signaling molecule in the immune system, the elucidation of the CDDP resistance pathway yields further insight into how NO operates and proliferates. This renders research put forth by Perrotta et al. applicable to various fields of research beyond cancer. 

 

References

  1. Dasari, S., & Tchounwou, P. B. (2014, October 5). Cisplatin in cancer therapy: molecular mechanisms of action. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4146684/.
  2. Lin1, Y., & Jianxin. (2019, July 12). Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. Retrieved from https://jhoonline.biomedcentral.com/articles/10.1186/s13045-019-0760-3.
  3. Nitric Oxide and Cell Stress – Cell Signaling and Neuroscience: Sigma-Aldrich. (n.d.). Retrieved from https://www.sigmaaldrich.com/life-science/cell-biology/cell-biology-products.html?TablePage=9552558.
  4. XU, W., LIU, L. Z., LOIZIDOU, M., AHMED, M., & CHARLES, I. G. (n.d.). The role of nitric oxide in cancer. Retrieved from https://www.nature.com/articles/7290133.
  5. Gorelik, A., Illes, K., Heinz, L. X., Superti-Furga, G., & Nagar, B. (2016, July 20). Crystal structure of mammalian acid sphingomyelinase. Retrieved from https://www.nature.com/articles/ncomms12196.
  6. Perrotta, C., Cervia, D., Di Renzo, I., Moscheni, C., Bassi, M. T., Campana, L., … Clementi, E. (2018, May 29). Nitric Oxide Generated by Tumor-Associated Macrophages Is Responsible for Cancer Resistance to Cisplatin and Correlated With Syntaxin 4 and Acid Sphingomyelinase Inhibition. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5987706/.

How Expectations Shape Perception

By Neha Madugala, Cognitive Science, ‘21

Author’s Note: Previous studies in neuroscience have suggested that our expectations and prior experiences impact how we perceive reality and current tasks. This idea is embedded in Bayesian integration, also referred to as multisensory integration, which essentially studies how the brain combines information obtained from sensory neurons to affect perception and create a distinct outlook on an organism’s surroundings. It defines how we view and think about our environment. 

This topic was particularly interesting to me because expectations can serve to aid our further understanding of incoming information, but can also inhibit our understanding if the new information contradicts our predictions.

 

Scientists classify expectations as essentially creating a placebo effect. The idea is that an individual’s expectations can influence the outcome of a certain treatment, their personal performance, or their feelings towards a person, place, or object. These “prior beliefs” can shape our reality and influence our perception of things we encounter in our daily life. The source of this placebo is argued to either be due to a conditioned response, where a situation has occurred multiple times with the same outcome (behaviorist approach) or that the placebo is a result of expectancy (expectation approach) (4). 

In a recent study by MIT, researchers argued for the latter hypothesis suggesting that expectations are the suspect for shaping our interpretation of our surrounding environment. MIT neuroscientists were inspired by the idea of Bayesian integration, which is the process of incorporating prior knowledge with new and uncertain information (6). Jazayeri et al. trained monkeys in a task called “ready-set-go.” The monkeys are shown a starting signal and ending signal. After seeing both signals, they are expected to press a button after the same time interval between the starting and ending code has passed (6). The neuroscientists had short intervals, which spanned from 480 to 800 milliseconds and long intervals, which were 800 to 1,200 milliseconds. The monkeys were given a visual cue at the start of each trial signalling whether the trial would be a “short” or “long” scenario (6). 

Monkeys were trained in either the short or long intervals. Each prior condition consisted of four blocks and then was followed by the 800 msec block. When all the monkeys were given an interval of 800 msec, those trained with a shorter interval gave an average response that was a little less than 800 msec and those trained with a longer interval gave an average response that was a little longer than 800 msec (6). These results reveal that monkeys trained under longer time intervals had an expectation for the 800 msec time interval to be longer, and those trained under a shorter time interval had an expectation that the 800 msec time interval would be shorter. This experiment was reproduced in humans and they found similar results (6). 

The MIT researchers wanted to further determine which areas of the brain are responsible for the influence of expectations from the short and long trials affected the perception of the length of time for the 800 msce interval. Jazayeri et al, found that prior experiences strengthen a pattern of synaptic connections in a region located in the frontal cortex, which has previously been determined to be involved in temporal resolution (6). These patterns of synaptic connections were further computationally modeled. These models were found to perform the tasks in the same manner as the monkeys used in the previous experiments. 

In another study at the University of Wisconsin, researchers conducted a similar study in humans testing how prior expectations of taste can influence an individual’s perception of the taste. Sarinopoulos et al. tested how subjects responded to an aversive taste, which was a diluted solution of quinine hydrochloride, with deceiving and accurate cues to test how placebo altered the participants’ responses. One group was informed that they were about to receive a highly aversive taste, while the other group was deceived and told they would receive a less aversive taste. The group told that they would receive a less aversive taste acted as the experimental group and were used to test whether placebo is altered by expectations or further stated if expectations affect our perception. Sarinopoulos et al. compared the expectancy effect from the highly aversive to less aversive groups by measuring changes in the insula and the amygdala, which are activated by aversive tastes (5). 

The insula is associated with pain processing, which explains the presence of many sensory receptors for visceroceptive, referring to signals received from the heart, lungs, stomach, bladder, and other internal organs near the trunk region, and interoceptive inputs, including regions of the brain such as the thalamus, brainstem, insula, somatosensory, and anterior cingulate cortex (2). The amygdala, located near the insula, specifically the medial temporal lobe forms a part of the limbic system and plays a fundamental role in emotion processing, specifically fear and pleasure (1). 

The study was conducted using rapid event-related fMRI design. In order to create a basis of comparison, the study included various conditions with different levels of aversion and manipulation – totaling to seven experimental conditions. The wide array of conditions allows Sarinopoulos et al. to eliminate differences if the perception involves a more aversive or less aversive taste by including both aversive and pleasant taste with varying perceptions. 

They found that subjects demonstrated a consistent pattern of rostral anterior cingulate cortex (rACC), which plays an important role in decision-making and attention, and orbitofrontal cortex (OFC), which is also involved in decision-making, activation when presented with the misleading cue, followed by a decrease in the bilateral insula responses to the highly aversive taste. It was also associated with a smaller amygdala response. These findings suggest that the rACC and OFC are both correlated with the placebo effect and are associated with the aversive and pleasant perception of taste. 

 

References

  1. “Amygdala.” ScienceDaily, ScienceDaily, www.sciencedaily.com/terms/amygdala.htm.
  2. D.P.Papoiu, Alexandru. “Functional MRI Advances to Reveal the Hidden Networks Behind the Cerebral Processing of Itch.” ScienceDirect, Academic Press, 5 Aug. 2016, www.sciencedirect.com/science/article/pii/B9780128028384000285.
  3. “Figure 2f from: Irimia R, Gottschling M (2016) Taxonomic Revision of Rochefortia Sw. (Ehretiaceae, Boraginales). Biodiversity Data Journal 4: e7720. Https://Doi.org/10.3897/BDJ.4.e7720.” doi:10.3897/bdj.4.e7720.figure2f.
  4. Haour, France. “Mechanisms of the Placebo Effect and of Conditioning.” Neuroimmunomodulation, vol. 12, no. 4, 2005, pp. 195–200., doi:10.1159/000085651.
  5. Sarinopoulos, Issidoros, et al. “Brain Mechanisms of Expectation Associated with Insula and Amygdala Response to Aversive Taste: Implications for Placebo.” Brain, Behavior, and Immunity, U.S. National Library of Medicine, Mar. 2006, www.ncbi.nlm.nih.gov/pubmed/16472720.
  6. Trafton, Anne, and MIT News Office. “How Expectation Influences Perception.” MIT News, 15 July 2019, news.mit.edu/2019/how-expectation-influences-perception-0715.
    panelC.A.HanlonL.T.DowdleJ.L.Jones, Author links open overlay, et al. “Biomarkers for Success: Using Neuroimaging to Predict Relapse and Develop Brain Stimulation Treatments for Cocaine-Dependent Individuals.” ScienceDirect, Academic Press, 25 July 2016, www.sciencedirect.com/science/article/pii/S0074774216301131.

Idiopathic Pulmonary Fibrosis (IPF): PHMG-P and Other Disinfectant-associated Chemicals as Potential Causes, the Mechanism, and Potential Treatments

By Téa Schepper, Biological Sciences ‘19

Author’s Note
I would like to give special thanks to Professor Katherine Gossett (UC Davis) for encouraging me to write this paper and Dr. Angela Haczku (UC Davis Health) for her expertise in pulmonary diseases. Last fall, I decided to research idiopathic pulmonary fibrosis after my grandfather was hospitalized and diagnosed with it over the previous summer. I quickly discovered that there wasn’t much research on the disease itself or how to treat it due to its rarity. The purpose of this literature review is to inform others about idiopathic pulmonary fibrosis and to encourage further research on the subject. With time, this research could be vital in saving lives just like that of my grandfather.

Abstract
Idiopathic pulmonary fibrosis (IPF) is an irreversible and fatal disease of the lungs. Although it has been associated with genetic predisposition, cigarette smoking, environmental factors (e.g. occupational exposure to gases, smoke, chemicals, or dusts) and other conditions such as gastroesophageal reflux disease (GERD), the mechanism and causes of IPF are not yet fully understood by researchers. However, recent studies have provided evidence that IPF may be caused by the generation of reactive oxygen species (ROS) due to the inhalation of chemicals commonly found in household disinfectants. These chemicals have been identified as polymethylene guanidine phosphate (PHMG-P), didecyldimethylammonium chloride (DDAC), polyhexamethylene biguanide (PHMB), oligo(2-(2-ethoxy)-ethoxyethyl) guanidinium chloride (PGH), and a mixture of chloromethylisothiazolinone (CMIT) and methylisothiazolinone (MIT). It has been suggested that the generation of ROS by these chemicals is responsible for damaging the cellular structures of the lungs and triggering the development of IPF through the activation of the transforming growth factor β (TGF-β) signaling pathway. Studies have also shown microRNAs to be key regulators of the TGF-β pathway and the development of the disease. Several promising future treatments of IPF involve the inhibition of the TGF-ꞵ signaling pathway either through the administration of drugs containing sesquiterpene lactones, matrine, or oridonin compounds; or through the replenishment or inhibition of certain miRNAs. The studies detailed here highlight the importance of further research on IPF.
Keywords: idiopathic pulmonary fibrosis | PHMG-P | TGFβ | miRNA

Introduction
Pulmonary fibrosis is an irreversible, fatal disease that results in scarring of the lung tissue and decreased function of the lungs. Idiopathic pulmonary fibrosis simply means that the cause is unknown. Patients with IPF typically experience difficulty breathing, with death caused by either respiratory failure or incurrent pneumonia. [1] The disease is characterized by marked collagen deposition and other alterations to the extracellular matrix (ECM), a network of macromolecules that provide structural support to the lungs. [1] These alterations to the ECM remodel and stiffen the lung’s airspaces and tissues. [1] It is also characterized by diffuse interstitial inflammation and respiratory dysfunction. [2] Although its cause remains unknown, it is believed that the main steps in the pathogenesis of IPF are initiated by the transforming growth factor β (TGF-ꞵ) signaling pathway and involves the migration, proliferation, and activation of lung fibroblasts and their differentiation into myofibroblasts. [3] Fibroblasts are cells that have a high ability to proliferate and to produce ECM and fibrogenic cytokines. [3] Fibrogenic cytokines are multifunctional immunoregulatory proteins that contribute to the inflammatory cell recruitment and activation needed to promote the development of fibrosis. [4] These cytokines can activate myofibroblasts, which are primarily responsible for the synthesis and excessive accumulation of ECM components, collagen and fibronectin, during the repair process that leads to fibrosis. [5], [6]

A 2011 outbreak of pulmonary fibrosis in South Korea prompted an onslaught of research as to how IPF may be caused and treated. [7] Specifically, this research has provided evidence that certain chemicals commonly found in household disinfectants can cause IPF through the generation of reactive oxygen species (ROS). ROS have a powerful oxidizing capability that can induce the destruction of cellular and subcellular structures in the lung, including DNA, proteins, lipids, cell membranes, and mitochondria. [8] This damage caused by ROS has been found to promote the activation of the TGF-ꞵ signaling pathway and the development of numerous characteristics associated with IPF. [4] This research has been invaluable for the discovery of new potential treatments for patients with IPF.

Potential inducers of idiopathic pulmonary fibrosis
After the 2011 outbreak in South Korea, researchers were able to find a connection between IPF and exposure to chemicals commonly found in household disinfectants, such as those found in humidifiers and pools. They have suspected that these chemicals can cause pulmonary fibrosis by infiltrating the respiratory system as aerosol particles to induce cellular damage. The chemicals polymethylene guanidine phosphate (PHMG-P), didecyldimethylammonium chloride (DDAC), polyhexamethylene biguanide (PHMB), oligo (2-(2-ethoxy) ethoxyethyl guanidinium chloride (PGH), and the mixture of chloromethylisothiazolinone (CMIT) and methylisothiazolinone (MIT) attracted particular interest.

In a study evaluating registered lung disease cases in South Korea, it was revealed that 70 percent of registered patients that suffered from IPF or other forms of household humidifier disinfectant-associated lung injury had used humidifier disinfectants containing the chemicals PHMG, PGH, or a mix of CMIT and MIT prior to their development of the disease [7] It was determined that the aerosol water droplets emitted by the humidifiers may have acted as carriers to deliver these chemicals into the lower part of the respiratory system, causing humidifier disinfectant-associated lung injury. [7] It was also revealed that most of the affected patients in the study had used humidifier disinfectant containing the chemical PHMG. [7]

Another study detailed that even slight exposure to PHMG could cause cell death triggered by the generation of reactive oxygen species (ROS). [8] Injury by ROS is typically followed by a fibrotic repair process involving increases in TGF-ꞵ expression, increased fibronectin, collagen synthesis, and a marked increase in the deposition of the ECM, all key characteristics of IPF. [4]

One way that ROS promote ECM deposition and IPF is by activating transcription factors like nuclear factor kappa B (NF-κB). [4] NF-κB is a regulator of proinflammatory cytokines that is typically bound to a cytoplasmic inhibitor. [9] One study found that exposure to the biocide (substance that destroys/prevents growth in organisms) and preservative PHMB was able to generate significant ROS levels and activate the NF-κB signaling pathway through the degradation of its inhibitor. [10] This is significant because the activation of proinflammatory cytokines is necessary for the recruitment and activation of myofibroblasts responsible for the increased ECM deposition that is characteristic of IPF patients. PHMB is also a cationic chemical and there is evidence that it can bind to negatively charged mucins, located within the mucous membranes of various organs. This can cause organs located in the respiratory tract to acquire increased susceptibility to PHMB and, in effect, a higher likelihood for the development of IPF. [10] Although the study did not match the exposure conditions of PHMB in humans, it has illuminated another way that individuals may develop IPF. [10]

In a study investigating the role of DDAC—one of the aerosols— in causing pulmonary fibrosis, mice exposed to DDAC exhibited fibrotic lesions that increased in severity over time. [11] Exposure to the chemical DDAC increased TGF-β signaling and appeared to maintain the differentiation of myofibroblasts. [11] This was complemented by the high expression of genes responsible for the production of collagen in fibrogenic lungs. [11] Overall, the form of pulmonary fibrosis that was induced by DDAC was mild, and so more research must be conducted before it can be concluded that the chemical DDAC is responsible for irreversible, severe pulmonary fibrosis. [11] It is also possible that some of the patients affected with humidifier disinfectant-associated lung injury may have experienced synergistic or additive effects from using multiple humidifier disinfectants, but this can be difficult to determine. [7] However, this study does indicate that exposure to DDAC can result in the development of several characteristics typically associated with IPF.

PHMG-P as a potential causative of IPF
Of the chemicals listed in this literature review, PHMG-P has received the most attention by researchers. PHMG-P is a biocide that exhibits its antibacterial effect by disrupting the cell wall and inner membrane of bacteria, causing cellular leakage. [12] In a similar manner, PHMG-P can infiltrate the lungs in the form of aerosol particles and may cause IPF in individuals through the generation of ROS and the disruption of the ECM’s alveolar basement membrane. [4]

Disruption of the basement membrane occurs through increased expression of matrix metalloproteinases (MMPs), enzymes that degrade various components of connective tissue matrices. [6] Metalloproteinase MMP2, in particular, destroys the basement membrane by solubilizing ECM elastin, fibronectin, and collagen, helping immune cells and fibroblasts migrate to alveolar spaces. [12] This can lead to severe damage of the lung architecture and aberrant ECM deposition typical of IPF. [4]

In a study using an air-liquid interface (ALI) co-culture model to study the pathogenesis of fibrosis, PHMG-P was shown to trigger ROS generation, airway barrier injury, and inflammatory response. [4] Recall that exposure to other chemicals suspected of being potential inducers of IPF had similar effects. Therefore, it can be concluded that PHMG-P infiltrates the lungs in the form of aerosol particles and induces airway barrier injury by ROS. [4] This would result in the release of fibrotic inflammatory cytokines and trigger a wound-healing response that would eventually lead to pulmonary fibrosis. [4]

In an animal study, mice exposed to PHMG-P experienced difficulty breathing and exhibited pathological lesions similar to the pathological features observed in humans affected with IPF. [12] A time course of 10 weeks was even established for PHMG-P-induced pulmonary fibrosis. [12] Throughout this period, it was found that a single instillation of PHMG-P contributed to an increase in proinflammatory cytokine levels and elicited an influx of inflammatory cells into lung tissue. [12] This recruitment of inflammatory cells contributes to the deposition of ECM components in the lungs and, as a result, the development of IPF. The instillation of PHMG-P was also suspected of blocking T cell development and impairing its function in the immune system. [6] This would result in an insufficient resolution of inflammation caused by the increased levels of proinflammatory cytokines and result in stacked fibrotic changes and the progression of IPF. [6]

Another study claimed that PHMG-P could cause pulmonary fibrosis through the activation of the NF-κB signaling pathway. [9] Recall that the NF-κB signaling pathway is responsible for the production of proinflammatory cytokines associated with the development of IPF. According to the study, mice exposed to PHMG-P generated a large amount of ROS and produced significant levels of the cytokines IL-1β, IL-6, and IL-8 in a dose-dependent manner. [9] These cytokines produced by the NF- κB signaling pathway are known to activate the TGF-β signaling pathway, increase collagen production, and promote wound-healing and tissue remodeling responses. [4] As these responses are characteristic of IPF and the cytokines exhibited in this study are known to be produced through the activation of the NF-κB signaling pathway, there is strong evidence that PHMG-P can induce IPF through the NF-κB signaling pathway.

The Mechanism of IPF
TGF-β’s importance in the mechanism
Various studies of IPF have indicated that transforming growth factor β (TGF-β), one of the most significant fibrotic cytokines, plays a key role in the mechanism that induces IPF. TGF-β1 is credited with inducing the differentiation of fibroblasts to myofibroblasts and upregulating the secretion of ECM proteins (like collagen) in IPF. [13]

Specifically, growth factor TGF-β1 binds directly to the TGFβ receptor II (TGFβRII), triggering the recruitment and activation of receptor TGFβRI by TGFβRII. [14] This step leads to the increased production of collagen through the activation of a collection of proteins called the Smad 2/3 complex. [13] The activated Smad 2/3 complex accomplishes this by entering the nucleus to enhance the transcription of profibrotic genes such as those that produce collagen. [13] This idea has been heavily supported by experimental evidence. Exposure to the chemical DDAC was found to increase cellular mRNA levels of TGF-β1 by two-fold. [11] This increase contributed to the activation of the Smad 2/3 complex [11] and induced the differentiation of fibroblasts to myofibroblasts. [15] Overall, this led to the development of pulmonary fibrosis-causing fibrotic lesions in mice. [11]

In another study, TGF-β was found to promote the development of IPF by inhibiting the expression of the microRNA let-7d, driving epithelial-mesenchymal transition (EMT) and increased collagen deposition. [1] Typically, epithelial cells are important to maintaining lung functionality by acting as a barrier against pathogens and other harmful compounds and secreting protective substances. [4] During EMT, however, these cells increase in cellular motility [16] and are transformed into myofibroblasts, resulting in the acceleration of IPF. [4] Additionally, epithelial cells during EMT promote the recruitment of fibroblasts, while simultaneously inhibiting collagen degradation and elevating the levels of the tissue inhibitor of metalloproteinase 1 (TIMP-1). [4] TIMP-1 binds to metalloproteinase MMP2 to promote the growth of fibroblasts and myofibroblasts, accelerating ECM deposition while preventing its degradation. [12] This corroborates the claim that the TGF-β signaling pathway is a crucial component in the mechanism of IPF.

MicroRNA’s role in TGF-β regulation and pulmonary fibrosis
MicroRNAs are mRNA sequences that bind to complementary mRNA of proteins to prevent their translation and expression. They are also involved in multiple steps of fibrosis, such as cell proliferation, apoptosis, and differentiation. [16] During the progression of IPF, miRNAs are known to regulate the process in which epithelial cells transition into myofibroblasts (EMT) to promote fibrosis. [16] Since each miRNA is specific to a particular mRNA sequence, miRNAs may function as either promoters or inhibitors of IPF. One study found that the miRNA, miR-433, can act as a promoter of IPF by upregulating receptor TGFβRI and growth factor TGF-β1 to amplify TGF-β signaling. [13] In a separate study, it was confirmed that miR-30c-1-3p may act as a negative regulator of pulmonary fibrosis through targeting the mRNA and preventing the expression of receptor TGFβRII. [15]

In a study headed by the Department of Pathology at the University of Michigan Medical School, it was concluded that the development and pace of progression of IPF may be due to abnormal miRNA generation and processing. [1] It was found that in rapidly progressing IPF biopsies, five miRNAs significantly increased and one decreased when compared to slowly progressive biopsies. [1] This indicates that miRNAs have a significant influence on the mechanism of IPF. Additionally, members of the miR-30c and let-7d family significantly decreased in both forms of IPF when compared with unaffected individuals. [1] As stated previously, certain members of the miR-30c family are believed to be negative regulators of IPF and members of the let-7d family are inhibitors of EMT. All of the stated evidence signifies that miRNAs, in addition to the TGF-β signaling pathway, play important roles in the development of IPF.

Other factors to consider in the mechanism
The NALP3 inflammasome is another important factor to consider in the mechanism of IPF. The NALP3 inflammasome is an innate immune system receptor suspected of being the main cause of persistent inflammatory response and exacerbation of fibrotic changes. [12] According to a study focused on researching PHMG-P-induced fibrosis in mice, the activation of the NALP3 inflammasome appeared to contribute to fibroblast proliferation and the progression of IPF due to the production of the cytokine IL-1β. [12] IL-1β is known to increase the production of ROS needed to induce lung tissue damage by upregulating the expression of the cytokine chemokine (C-X-C motif) ligand 1 (CXCL1). [6] This upregulation of CXCL1 and resulting tissue damage was exhibited in the study, reinforcing the claim that the NALP3 inflammasome is a central component in the IPF mechanism. [12]

Secretory immunoglobulin A (sIgA), an antibody that has an important role in the immune system, also may have a role in the mechanism of pulmonary fibrosis. In a study supported by the Japan Society for the Promotion of Science, immunoglobulin A, the most abundant human immunoglobulin, was compared with TGF-β in its role in inducing pulmonary fibrosis and inflammation. [3] In this study, sIgA enhanced collagen production and induced responses in cytokines IL-6 and IL-8, and monocyte chemoattractant protein 1 (MCP-1). [3] MCP-1, similar to IL-6 and IL-8, is responsible for stimulating collagen synthesis and TGF-β production in fibroblasts. [6] It was concluded that under IPF, sIgA may make contact with lung fibroblasts and result in exacerbating airway inflammation and fibrosis through enhancing the production of inflammatory cytokines and ECM collagen. [3]

Potential therapeutic approaches and alternative methods of treatment
According to recent studies, only two drugs, pirfenidone and nintedanib, have been approved by the FDA for IPF treatment, and they have still failed to be significantly effective in treating the disease. [13] However, current studies on therapeutics that inhibit the TGF-β signaling pathway appear promising. Two particular drugs of interest are oridonin and matrine, along with their derivatives.

Oridonin, a major compound found in the herb Rabdosia rubescens, has been used in traditional Chinese medicine to treat inflammation and cancer for hundreds of years. [2] In a study focused on testing its effectiveness in treating IPF, it was found that exposure to oridonin significantly decreased the levels of three major biomarkers of fibrosis—hydroxyproline (HYP), beta silicomolibdic acid (β-SMA), and collagen, type 1, alpha 1 (COL1A1)—in a dose-dependent manner. [2] Additionally, oridonin attenuated pathological changes such as alveolar space collapse and infiltration of inflammatory cells. [2] Oridonin was able to achieve this through significantly inhibiting the upregulation of collagen production and the activation of Smad 2/3 in lung tissues, an important step in the progression of IPF through the TGF-β signaling pathway. [2] This presents a strong case for the use of oridonin as a treatment for IPF.

Matrine, similar to oridonin, also has roots in traditional Chinese medicine. Matrine has been shown in several studies to exhibit significant antifibrotic effects through the inhibition of the TGF-β pathway. In one study, matrine was shown to have an inhibitory effect against liver fibrosis by reducing the expression of TGF-β1 and instead increasing the expression of hepatocyte growth factor (HGF). [13] Through the inhibition of the TGF-β/Smad pathway, matrine was also shown to exhibit antifibrotic activities on cardiac fibrosis. [13] These antifibrotic effects are not just held by matrine, but their derivatives as well. The matrine derivative MASM was also shown to exhibit potent antifibrotic effects. [13] As the TGF-β signaling pathway is a central component in the mechanism of IPF, matrine and their derivatives present themselves as strong candidates for anti-IPF therapeutics.

Other drug candidates for the treatment of IPF are sesquiterpene lactones. Sesquiterpene lactones are naturally occurring compounds that are known to harbor extensive connections with the TGF-β1 signaling pathway. [5] This makes these compounds and their analogues strong drug candidates for IPF treatment. In one study, two out of 44 semi-synthetic analogues of sesquiterpene lactones were found to highly inhibit the TGF-β1 signaling pathway, ECM production, and the formation of fibroblasts. [5] This inhibition of ECM production and the formation of fibroblasts corroborates the claim that administering sesquiterpene lactones is an effective treatment for IPF.

As mentioned earlier, studies have shown microRNAs to be negative regulators of IPF. One study suggests that the replenishment of miR-30c may be a promising treatment. [15] Increased levels of miR-30c would promote the negative regulation of the TGF-β signaling pathway, suppressing the differentiation of myofibroblasts and preventing excessive collagen accumulation. In this manner, the replenishment of miR-30c would attenuate IPF symptoms. The inhibition of certain miRNAs, such as miR-34a, has also been shown to be an effective treatment. The inhibition of miR-34a by treatment with the caveolin-1 scaffolding domain peptide (CSP) was found to prevent pulmonary fibrosis by preventing the overgrowth of fibroblasts. [17] Although the manipulation of miRNA expression has been shown to have a large impact on the development of IPF, there is one issue with this method of treatment. A single miRNA can target thousands of mRNAs, making the function miRNAs have in pathophysiological events involved in IPF unclear. [17]

Conclusion
Although there is limited research on the etiology of IPF, this should only serve to motivate researchers to study its causes, mechanism, and potential treatments further. Thus far, the chemicals that have been shown to be potential inducers of IPF are PHMG-P, DDAC, PHMB, PGH, and the mixture of CMIT and MIT. However, out of all the chemicals, only PHMG-P has been heavily researched, and so additional studies are needed to confirm the other chemicals’ involvement in inducing IPF. Additionally, this research could be expanded upon through the study of the effects of other household disinfectants on the human body to determine whether they are also factors in inducing IPF. Besides the discovery of potential causatives, studies have also further illuminated details about the mechanism. Specifically attracting interest is the TGF-β signaling pathway in addition to miRNAs and their involvement in the regulation of IPF. Furthermore, the manipulation of TGF-β and miRNA levels with oridonin, matirne, and sesquiterpene lactones has been linked to favorable outcomes in the treatment of IPF. With further research, these treatments could become common practice and improve the quality of life for patients suffering from IPF.

 

References

  1. S. R. Oak et al., “A Micro RNA Processing Defect in Rapidly Progressing Idiopathic Pulmonary Fibrosis,” PLoS One, vol. 6, no. 6, p. e21253, Jun. 2011.
  2. Fu, Y., Zhao, P., Xie, Z., Wang, L., Chen, S., “Oridonin Inhibits Myofibroblast Differentiation and Bleomycin-induced Pulmonary Fibrosis by Regulating Transforming Growth Factor β (TGFβ)/Smad Pathway,” Med Sci Monit., vol. 24, pp. 7548–7555, 2018.
  3. Arakawa S., Suzukawa M., Watanabe K, Kobayashi K., Matsui H., Nagase T., Ohta K., “Secretory immunoglobulin A induces human lung fibroblasts to produce inflammatory cytokines and undergo activation,” Clinical and Experimental Immunology, vol. 195, no. 3, pp. 287–301, 2019.
  4. Kim, H.R., Lee, K., Park, C.W., Song, J.A., Shin, D.Y., Park, Y.J., Chung, K.H., “Polyhexamethylene guanidine phosphate aerosol particles induce pulmonary inflammatory and fibrotic responses,” Archive of Toxicology, vol. 90, pp. 617–632, 2016.
  5. Li, X., Lu, C., Liu, S., Liu, S., Su, C., Xiao, T., Bi, Z., Sheng, P., Huang, M., Liu, X., Wei, Y., Zhao, L., Miao, S., Mao, J., Huang, H., Gao, S., Liu, N., Qi, M., Liu, T., Qin, S., Wei, L., Sun, T., Ning, W., Yang, G., Zhou, H., Yang, C., “Synthesis and discovery of a drug candidate for treatment of idiopathic pulmonary fibrosis through inhibition of TGF-β1 pathway,” European Journal of Medicinal Chemistry, vol. 157, pp. 229–247, 2018.
  6. Song, J.A., Park, H., Yang, M., Jung, K.J., Yang, H., Song, C., Lee, K., “Polyhexamethyleneguanidine phosphate induces severe lung inflammation, fibrosis, and thymic atrophy,” Food and Chemical Toxicology, vol. 69, pp. 267–275, 2014.
  7. Park, D.U., Ryu, S.H., Lim, H.K., Kim, S.K., Choi, Y.Y., Ahn, J.J., Lee, E., Hong, S.B., Do, K.H., Cho, J.L., Bae, M.J., Shin, D.C., Paek, D.M., Hong, S.J., “Types of household humidifier disinfectant and associated risk of lung injury (HDLI) in South Korea,” Science of the Total Environment, pp. 53–60, 2017.
  8. Jung, H., Zerin, T., Podder, B., Song, H., Kim, Y., “Cytotoxicity and gene expression profiling of polyhexamethylene guanidine hydrochloride in human alveolar A549 cells,” Toxicology in Vitro, vol. 28, pp. 684–692, 2014.
  9. Kim, H.R., Shin, D.Y., Chung, K.H., “The role of NF-κB signaling pathway in polyhexamethylene guanidine phosphate induced inflammatory response in mouse macrophage RAW264.7 cells,” Toxicology Letters, vol. 233, no. 2, pp. 148–155, 2015.
  10. Kim, H.R., Shin, D.Y., Chung, K.H.., “In vitro inflammatory effects of polyhexamethylene biguanide through NF-κB activation in A549 cells,” Toxicology in Vitro, vol. 38, pp. 1–7, 2017.
  11. Ohnuma-Koyama, A., Yoshida, T., Tajima-Horiuchi, H., Takahashi, N., Yamaguchi, S., Ohtsuka, R., Takeuchi-Kashimoto, Y., Kuwahara, M., Takeda, M., Nakashima, N., Harada, T., “Didecyldimethylammonium chloride induces pulmonary fibrosis in association with TGF-β signaling in mice,” Experimental and Toxicologic Pathology, vol. 65, pp. 1003–1009, 2013.
  12. Song, J., Kim, W., Kim, Y., Kim, B., Lee, K., “Time course of polyhexamethyleneguanidine phosphate induced lung inflammation and fibrosis in mice,” Toxicology and Applied Pharmacology, vol. 345, pp. 94–102, 2018.
  13. Li, L., Ma, L., Wang, D., Jia, H., Yu, M., Gu, Y., Shang, H., Zou, Z., “Design and Synthesis of Matrine Derivatives as Novel Anti-Pulmonary Fibrotic Agents via Repression of the TGFβ/Smad Pathway,” Molecules, vol. 24, no. 6, p. 1108, 2019.
  14. S. Ghatak et al., “Transforming growth factor β1 (TGFβ1)-induced CD44V6-NOX4 signaling in pathogenesis of idiopathic pulmonary fibrosis,” J. Biol. Chem., vol. 292, no. 25, pp. 10490–10519, 23 2017.
  15. Wu, M., Liang, G., Duan, H., Yang, X., Qin, G., Sang, N.., “Synergistic effects of sulfur dioxide and polycyclic aromatic hydrocarbons on pulmonary pro-fibrosis via mir-30c-1-3p/ transforming growth factor β type II receptor axis,” Chemosphere, vol. 219, pp. 268–276, 2019.
  16. Shin, D.Y., Jeong, M.H., Bang, I.J., Kim, H.R., Chung, K.H.., “MicroRNA regulatory networks reflective of polyhexamethylene guanidine phosphate-induced fibrosis in A549 human alveolar adenocarcinoma cells,” Toxicology Letters, vol. 287, pp. 49–58, 2018.
  17. S. K. Shetty et al., “p53 and miR-34a Feedback Promotes Lung Epithelial Injury and Pulmonary Fibrosis,” Am. J. Pathol., vol. 187, no. 5, pp. 1016–1034, May 2017.

Reading into the Future: Development of Long-read DNA Sequencing

By Aditi Goyal, Genetics and Genomics, ‘22

At this moment, the next revolution in the field of biology is currently underway: third-generation sequencing, or Long-Read sequencing. Instead of relying on cluster-based short read technology (1), third-generation sequencing builds a DNA sequence on a nucleotide basis, therefore eliminating the extensive process of read alignment.

Until now, scientists across the world have been heavily relying on Next Generation Sequencing (NGS) for getting DNA sequences. This technology creates clusters of short DNA sequences, which range anywhere from 50 to 150 base pairs in length, by using fluorescent nucleotides (2). It is often referred to as sequencing by synthesis because a DNA sequence is created by tracking which nucleotides are being used to build the parallel strand. NGS has served the scientific community well, providing extremely high coverage and high accuracy reads, as well as slashing the cost and time to sequence an entire genome (2). However, the drawbacks are just as serious. While NGS is a fantastic candidate for bacterial or archaeal genomes, it fails to capture the complexity of eukaryotic genomes. About half of the human genome is comprised of repeated sequences (2). Currently, the function of these repeated regions remains unclear, partially due to the fact that it is not possible to get an accurate DNA sequence of these areas using short-read sequences. With a maximum read size of 150 base pairs for NGS, there are too many potential matches for a read that small for scientists to accurately assign that read to a region in the genome. Another major problem is the quality of each read. While the technology itself is very accurate, there are several sources of error that quickly cause the quality of each read to deteriorate, such as biases during the PCR of mixtures, polymerase errors, base misincorporation, cluster amplification errors, sequencing cycle errors, and incorrect image analysis (3). All these errors result in about 1% of bases being read incorrectly, which, when applied to a 3 billion base pair genome, can be incredibly damaging.

This is why long-read sequencing is such a breakthrough. By analyzing a DNA sequence from nucleotide to nucleotide, scientists can build considerably longer reads with a much higher confidence level as compared to NGS. Ideally, with this technology, scientists will be able to produce de novo whole genome sequences for patients with genetic disorders, allowing them to understand the root of their disease at an unmatched resolution. This could pave the way to accurately diagnosing and curing complex genetic diseases. In the last few years alone, several papers have been published on the impacts of long-read sequencing investigating diseases such as Parkinson’s disease, fragile X syndrome, Alzheimers, and ALS (11). Other applications include improving our understanding of human genetic diversity.  Recent studies show that the reference human genomes available today do not accurately represent humanity at a global level, but rather significantly overrepresent people of european descent (12). With the rise of long-read sequencing, it will be easier and cheaper to fully sequence a human genome, allowing us to expand the resources available and accurately reflect the human population.

 

There are currently several companies researching long-read sequencing, however, the most promising company appears to be Pacific Biosciences (Pac Bio) due to their development of single molecule real time sequencing (SMRT) (4, 5).

There are 2 key inventions that allow for the success of SMRT. The first is the fluorescent tagging.

Like with NGS, each nucleotide is modified to fluoresce a certain color, indicating which nucleotide it is, however with SMRT, the fluorescence is linked to the terminal phosphate of a nucleotide, instead of the base itself (8). Also similar to the NGS, the complementary strand continues to build. Now, when the DNA polymerase cleaves off the terminal phosphate, it releases the fluorescent group, which allows us to track which nucleotide was incorporated based on the color of the fluorescent.

The second innovation is the zero-mode waveguide (ZMW). The ZMW is a small nano chamber that contains the DNA sample during the sequencing process. It passes refracted light through so that the fluorescence of the nucleotides can be seen. This technology essentially acts as a microscope, allowing us to gain a powerful resolution of the DNA structure. Each ZMW can recognize over 10 base pairs per second with extreme accuracy. Additionally, given the ability for these ZMWs to be run in parallel, thousands of chambers can be sequenced at the same time, allowing for a fast cycle and long reads. 

The advantages of SMRT are clear: it allows for long reads to be built. This means that scientists will have the ability to understand the overall complexity of large eukaryotic genomes. Another advantage is the speed and portability of the technology. Once it is completely developed, SMRT will be able to sequence an entire human genome in under 3 minutes for less than $100 in a device the size of a flash drive, a stark difference from today’s estimate (9).

Like any novel technology, there are some challenges that must be overcome before SMRT can be used commercially. The most pressing is concerns over accuracy. Individual reads can contain 11-14% errors on average, dragging the quality score of the read down. However, developers have noticed that these errors occur at random across the genome. By using a 10x coverage method, 9 out of 10 times, SMRT will provide the correct sequence for that point, which allows the accuracy to rise to approximately 99.99%. 

Overall, SMRT is a revolutionary development that will soon change the way we understand biology. It will allow us to gain a holistic understanding of complex eukaryotic genome and will provide a higher resolution of the genome that we can use for further analysis.

 

References

  1. “Illumina Sequencing Technology.” Illumina, October 11, 2010. https://www.illumina.com/documents/products/techspotlights/techspotlight_sequencing.pdf.
  2. Treangen, Todd J, and Steven L Salzberg. “Repetitive DNA and next-Generation Sequencing: Computational Challenges and Solutions.” Nature reviews. Genetics. U.S. National Library of Medicine, November 29, 2011. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3324860/.
  3. Fox, Edward J, Kate S Reid-Bayliss, Mary J Emond, and Lawrence A Loeb. “Accuracy of Next Generation Sequencing Platforms.” Next generation, sequencing & applications. U.S. National Library of Medicine, 2014. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4331009/.
  4. Check Hayden, Erika. “Genome Sequencing: the Third Generation.” Nature News. Nature Publishing Group, February 6, 2009. https://www.nature.com/news/2009/090206/full/news.2009.86.html.
  5. Check Hayden, Erika. “Genome Sequencing: the Third Generation.” Nature News. Nature Publishing Group, February 6, 2009. https://www.nature.com/news/2009/090206/full/news.2009.86.html.
  6. Eid, John, Adrian Fehr, Jeremy Gray, Khai Luong, John Lyle, Geoff Otto, Paul Peluso, et al. “Real-Time DNA Sequencing from Single Polymerase Molecules.” Science. American Association for the Advancement of Science, January 2, 2009. https://science.sciencemag.org/content/323/5910/133.
  7. “Video: Introduction to SMRT Sequencing.” PacBio. Accessed November 7, 2019. https://www.pacb.com/videos/video-introduction-to-smrt-sequencing/.
  8. “Single Molecule Real Time Sequencing – Pacific Biosciences.” YouTube. YouTube. Accessed November 7, 2019. https://www.youtube.com/watch?v=v8p4ph2MAvI.
  9. Schadt, Eric E., Steve, Andrew, and Turner. “Window into Third-Generation Sequencing.” OUP Academic. Oxford University Press, September 21, 2010. https://academic.oup.com/hmg/article/19/R2/R227/641295.
  10. Roberts1, Richard J, Mauricio, and Michael C Schatz3. “The Advantages of SMRT Sequencing.” Genome Biology. BioMed Central, July 3, 2013. https://genomebiology.biomedcentral.com/articles/10.1186/gb-2013-14-7-405.
  11. Martin O Pollard, Deepti Gurdasani, Alexander J Mentzer, Tarryn Porter, Manjinder S Sandhu, Long reads: their purpose and place, Human Molecular Genetics, Volume 27, Issue R2, 01 August 2018, Pages R234–R241, https://doi.org/10.1093/hmg/ddy177

CD47-SIRPα Pathway as a Target for Cancer Therapeutics

By: Nicholas Garaffo, Biochemistry and Molecular Biology, 20’

Authors’ Note: I originally wrote this piece for my UWP 104E class Writing in the Science’s, but I have since expanded my topic and complicated my original analysis. Ultimately, I submitted this piece to the Norman J. Lang Prize, was awarded second place, and presented my research to the UC Davis college deans. I chose to focus my literary review on cell signaling pathways because I hope to study such topics in my PhD. This topic has impacted my life personally because my grandmother was diagnosed with non-hodgkin’s lymphoma my freshman year of college. In fact, during this review the drugs she was treated with were mentioned, and the CD47-SIRPa pathway may actually be used to treat such a disease. 

 

Abstract

According to the American Cancer Institute, in 2018, cancer had an estimated 1,735,350 new cases and 609,640 people died in the United States alone1. Like many deadly diseases, cancer has found ways to evade the immune system. Many cancers overexpress CD47a widely expressed “don’t eat me” signalwhich interacts with the immune cells’ signal receptor protein alpha (SIRPα), to prevent programmed cell removal (PrCR) 2. ‘Don’t eat me’ signals are a class of cell surface proteins that tell the immune system the corresponding cell is healthy and performing properly. Recent advances have been made to target the CD47-SIRPα pathway to prevent the antiphagocytic activity seen in many cancers. The scope of this review is limited to two new methods used to inhibit the CD47-SIRPα pathway: anti-CD47 and SIRPα antibodies, and small peptide inhibitors. The antibodies for CD47 have shown effectiveness in clinical trials. Antibody inhibition for CD47 and SIRPα were compared, and SIRPα produced better cell type specific inhibition, but similar on-target healthy cell phagocytosis caused anemia in both trials. Several factors, including degradation and inability to penetrate dense tumors, hinder antibody treatment in all cancer patients; therefore, small peptide inhibitors offer an alternate route for inhibition to occur. 

 

Introduction 

PrCR is an efficient and accurate process that clears dead, dying, or infectious cells. Phagocytic macrophagesneutrophils, dendritic cells and monocyte derivativesperform PrCR, and acts independently of apoptosisprogrammed cell rupture. Without such processes apoptosis would release cellular contents, such as proinflammatory signals, into the extracellular space3, 4. Such signals can activate inflammatory responses leading to organ and tissue damage. Cells that are under oxidative stress release chemotactic factors that attract immune cells4. Once the macrophage locates the infected cell, it recognizes the cell through “don’t eat me” or “eat me” ligands to prevent or induce cell engulfment, respectively. The scope of this review is limited to a single signalreceptor interaction between CD47a widely expressed transmembrane protein5and signal receptor protein alpha (SIRPα)a receptor expressed on phagocytic immune cells. CD47 links to SIRPα and acts as a “don’t eat me” signal to prevent cellular phagocytosis. 

Macrophages activate specific transcription factors in response to environmental cues. Notch signaling describes the macrophages’ internal protein cascade upon receptor-ligand interactions. The macrophage responds by adjusting its polarization into either phagocytic, categorized as the M1 polarization, or non-phagocytic (M2)6. This is important because a macrophages’ phenotype is environmentally dependent on surrounding cell signals, and plays a critical role in PrCR. Upon binding CD47, SIRPα initiates a signal transduction via src homology-2 domain recruitment, a large protein complex. This complex importantly contains two tyrosine phosphatases: SHP-1 and SHP-2, which both interact with various proteins for signaling. Once activated, SHP-1 propagates a downstream antiphagocytic signal (M2) through an unknown mechanism2, 7, 8. Naturally, this ensures macrophages do not engulf healthy cells. In fact, a single CD47-SIRPα interaction is capable of preventing phagocytosis9

One mechanism cancer uses to evade the immune system is through the CD47-SIRPα pathway. For cancer to propagate it must: prevent apoptosis, divide rapidly, and evade the immune system11. Many cancers overexpress CD47 and it is hypothesized that CD47 accumulation acts as a camouflage. Since CD47 is sufficient to prevent PrCR of healthy cells, when cancers overexpress this signal they can effectively prevent phagocytic clearance. Therefore, inhibiting the CD47-SIRPα pathway is a favorable route for therapeutics2. Efforts have been made to target CD47 and SIRPα individually through monoclonal antibodies (mAb) and high-affinity small peptides. These methods, coupled with known cancer therapeutics like Rituximab, have been shown to decrease tumor cell density in vitro, in vivo, and in clinical trials14. The main goal here is to assess the potential adverse effects presented in each therapeutic. Major hurdles include the potential for other phagocytic inhibitors, off-target effects, and the lack of long-term effects. 

 

Antibody targeting of CD47 and SIRPα shows inhibition of anti-phagocytic signaling 

Antibody targeting of CD47 is an effective therapeutic for specific cancers. Acute myelogenous leukemia (AML) is maintained by self-renewing leukemia stem cells (LSC) which evade phagocytosis through increased CD47 expression2, 4. By targeting CD47, researchers hope to activate a focused immune response against tumor cells. Both, in vitro and in vivo analysis of an anti-CD47 antibody (B6H12.2) in an AML LSC model reported a 3-5 fold increase in phagocytosis compared to macrophages and tumor cells alone12. In contrast, an anti-SIRPα antibody reported an increased phagocytosis only when coupled with trastuzumaba known breast cancer therapeutic10. This contradiction is important, firstly, because it shows antibodies alone are insufficient to increase phagocytosis. Secondly, it hypothesizes other “don’t eat me” signals continue to inhibit phagocytosis after the CD47-SIRPα has been blocked. Lastly, it shows two alternate ways to inhibit the CD47-SIRPα pathway. The anti-SIRPα antibody is argued as a favored cancer therapeutic because CD47 is widely expressed across cell types. Targeting CD47 may cause unwanted on-target CD47 phagocytosis. Despite this possibility, an in vivo analysis of B6H12.2 reported no additional phagocytic activity even with equivalently coated cells4. However, therapeutic exposure only lasted 14 days and animal models were sacrificed afterwards; therefore, long term effects have not been assessed. 

 

Anti-CD47 antibody development towards human variant 

A limitation to antibody therapeutics is inter-species variation. B6H12.2s’ affinity decreased from mice to humans due to CD47 variation. Therefore, a human anti-CD47 antibody (5F9) was produced and grafted to immunoglobulin G4 scaffold (IgG4)13. The resulting antibody (Hu5F9-G4) was tested in vitro for its affinity towards human CD47 and 

revealed strong attraction, illustrated by the incredibly small amount of dissociation betweenCD47-SIRPa (KD=1×10-12). Hu5F9-G4 was further tested in cynomolgus monkeys to assess potential toxicity in a human-like model. No serious adverse events were characterized except dose dependent anemia which was expected due to the high CD47 expression on red blood cells and reverted naturally after antibody treatment2. However, using healthy monkeys was a limitation to this study; tumor cell phagocytosis was not assessed in vivo. Furthermore, the toxic effects were only tested in a three week period and no long-term effects were characterized. 

 

Clinical trials for the human CD47 antibody variant 

Clinical trials of Hu5F9-G4 antibody coupled with rituximab are currently being conducted. Toxicity and effectiveness were assessed in 22 patients with aggressive and indolent lymphoma (this can be thought of as metastatic and benign cancer, respectively)14. From this sample, 50% had an objective response and 36% had a complete response. Furthermore, by day 28, white and red blood cells had approximately 100% of their CD47 receptors occupied. This is important because blocking all CD47-SIRPα interactions is needed for effective results and, since all cells are not degraded, other signals must be preventing phagocytosis in healthy cells9. As seen in other animal models, dose-dependent anemia was the most common side-effect but normal levels of red blood cells reverted at lower dosages or after the treatment period2. This coupled treatment showed promising results for patients with aggressive and indolent lymphoma. 

 

High-affinity small peptides as an alternate CD47-SIRPα inhibitor 

Another issue with antibody therapeutics is their poor permeability into dense tumors15. Given this hurdle, an alternate route is small peptide inhibitors against the CD47-SIRPα pathway. By antagonizing CD47 or SIRPα, the small peptides should block any anti-phagocytic signaling and allow PrCR to occur. Small peptides are highly specific antagonists modeled after invariable regions of their target. By analyzing the human SIRPαs’ binding domain, a competitive antagonist for human CD47 was produced16. The high-affinity SIRPα monomer (CV1) was tested in vitro to assess its affinity towards human and mouse CD47. CV1 presented the same inhibition between human and mouse CD47 variants (50,000-fold affinity increase and KD=34.0 pm). Since small peptides are modeled after invariable regions, their affinities are similar between species. This is important because affinity testing for humans can now be estimated through animal models; thereby, eliminating toxic and costly human trials. Furthermore, ex vivo co-treatment of CV1 with anti-Her2/neua well studied breast cancer antibodyincreased phagocytosis of human breast cancer cells compared to anti-Her2/neu alone. This coupled treatment was tested in vivo and revealed increased anti-tumor responses in a mouse breast cancer model. Co-treatment illustrates the possibility for more “don’t-eat-me” signals present on cancer cells. Despite CV1s’ efficacy, its high affinity caused on-target CD47 binding across all cell types. Although this high-affinity is wanted in therapeutics, unwanted red blood cell phagocytosis occurred and resulted in anemia. This side-effect, however, is common between all CD47 inhibitors and naturally reverted after treatment16,17

A solution to CD47 on-target side-effects is antagonizing SIRPα instead. CD47 is expressed widely across cell lines, while SIRPα is present on a subset of macrophages; therefore, SIRPα is arguably the favored target for cancer therapeutics10. One potential SIRPα antagonist, which showed similar potency as CV1, is Velcro-CD47– a high-affinity CD47 variant synthesized through a novel protein “velcro” technique9. Through in vitro analysis, Velcro-CD47 enhanced mAb-mediated phagocytosis by inhibiting anti-phagocytic signals. It is important to note that the small peptide inhibitors do not, by themselves, promote phagocytosis. While antibodies illicit a targeted immune response, small peptides rely on the immune systems’ natural clearance or other cancer therapeutics to clear cancer cells. 

Other small peptide therapeutics for CD47-SIRPα inhibition include 4N1K and its derivative PKHB1. There has been substantial evidence that 4N1K increases PrCR in vivo18,19,20,21. Several papers highlight a difference between CD47 +/+ and CD47 -/- tumor cells removal upon 4N1K treatment22. Unlike B6H12/Hu5F9, 4N1K is able to potentiate PrCR of chronic lymphocytic leukemia (CLL) in soluble conditions; however, in human serum, 4N1K is degraded by proteases faster than antibodies-more than 90% was degraded in an 1-hour incubation18. This therapy, therefore, requires more injections for an accurate response. Furthermore, 4N1K has conflicting evidence for its CD47 specificity, and may cause off-target effects23. In order to combat these issues, two terminal residues were replaced on 4N1K with their D analogues. This new therapeutic, PKHB1, lasted longer in human serum, maintained its solubility, and continued to bind CD47. PKHB1 was then tested in vivo and showed higher rates of CLL PrCR 18. PKHB1 is currently in pre-clinical trials for CLL treatment.

 

Conclusion

Cancer therapeutics continue to progress towards more accurate and less toxic forms. In turn, this eliminates the need for deleterious options like chemotherapy. CD47-SIRPα presents a target for future immunological therapeutics. Although anemia and off-target effects must be further assessed, CD47-SIRPα inhibitors present a feasible and effective option. 

Anti-CD47 antibodies increase tumor cell phagocytosis in a coupled therapy with Rituximab and show accurate responses in Phase I clinical trials14. In response to phagocytosis of healthy CD47-expressing cells, anti-SIRPα antibodies have been developed which illustrated similar phagocytic responses in vivo with higher cell type specificity10. Regardless of the target, blocking the CD47-SIRPα pathways still cause anemia in patients. This is an expected and treatable side-effect that naturally reverts after a short-term treatment. No long-term effects of antibody treatments have been assessed and remains a limitation to these studies. To combat the limitations seen in antibody treatments, small peptide inhibitors are being developed for the CD47-SIRPα pathway. Velcro-CD47 presented a novel protein manufacturing technique and provided a high-affinity peptide to prevent inhibitor signals16. 4N1K has been shown to increase tumor cell phagocytosis between CD47 +/+ and CD47-/- but small peptide inhibitors are hindered by their short half-life in blood serum due to protease activity. 

By blocking the CD47-SIRPα pathway and other inhibitor signals, researchers can trigger a natural immune clearance of cancer cells. Although differences between CD47 and SIRPα therapeutics, long-term effects, and 4N1K off-target effects must be further assessed, preliminary research indicates this pathway as a potential target for future therapeutics. 

 

Reference

  1. “Cancer Statistics”. National Cancer Institute, 2019, https://www.cancer.gov/about-cancer/understanding/statistics.
  2. Oldenborg PA, Zheleznyak A, Fang Y, Lagenaur CF, Gresham HD, Lindberg FP. “Role of CD47 as a Marker of Self on Red Blood Cells.” Science. 2001;288: 2051- 54 
  3. Lagasse E, and Weissman IL. “bcl-2 inhibits apoptosis of neutrophils but not their engulfment by macrophages.” J Exp Med. 1994 Mar 1;179(3):1047-52. 
  4. Chao MP, Alizadeh AA, Tang C, Jan M, Weissman- Tsukamoto R, Zhao F, Park CY, Weissman IL, Majeti R. “Therapeutic antibody targeting of CD47 eliminates human acute lymphoblastic leukemia.” Cancer Res. 2011 Feb 15; 71(4): 1374-84. 
  5. Brown EJ, and Frazier WA. “Integrin-associated protein (CD47) and its ligands.” Trends Cell Biol. 2001 Mar;11(3): 130-5. 
  6. Alvey C, and Discher DE. “Engineering macrophages to eat cancer: from “marker of self” CD47 and phagocytosis to differentiation.” J Leukoc Biol. 2017;102: 31–40. 
  7. Barclay AN, and Brown MH. “The SIRP family of receptors and immune regulation.” Nat Rev Immunol. 2006 Jun;6(6): 457-64 
  8. Lin Y, Zhao JL, Zheng QJ, Jiang X, Tian J, Liang SQ, Guo HW, Qin HY, Liang YM, Han H. “Notch Signaling Modulates Macrophage Polarization and Phagocytosis Through Direct Suppression of Signal Regulatory Protein α Expression.” Front Immunol. 2018 July 30. 
  9. Ho CC, Guo N, Sockolosky JT, Ring AM, Weiskopf K, Ozkan E, Mori Y, Weissman IL, Garcia KC. “‘Velcro’ engineering of high affinity CD47 ectodomain as signal regulatory protein α (SIRPα) antagonists that enhance antibody-dependent cellular phagocytosis.” J Biol Chem. 2015 May 15;290(20): 12650-63. 
  10. Zhao XW et al. “CD47-signal regulatory protein-α (SIRPα) interactions form a barrier for antibody-mediated tumor cell destruction.” Proc Natl Acad Sci USA. 2011 Nov 8;108(45): 18342-7. 
  11. Ottaviano M, De Placido S, Ascierto PA. “Recent success and limitations of immune checkpoint inhibitors for cancer: a lesson from melanoma.” Virchows Arch. 2019 Feb 12. 
  12. Majeti R, Chao MP, Alizadeh AA, Pang WW, Siddhartha J, Gibbs Jr. KD, Rooijen N, and Weissman IL. “CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells.” Cell. 2009 July 13;138(2): 286-299. 
  13. Liu J et al. “Pre-Clinical Development of a Humanized Anti-CD47 Antibody with Anti-Cancer Therapeutic Potential.” PLoS ONE. 2015. 
  14. Advani R et al. “CD47 Blockade by Hu5F9-G4 and Rituximab in Non-Hodgkin’s Lymphoma.” N Engl J Med. 2018 Nov 1;378(18):1711-21. 
  15. Chames P, Van Regenmortel M, Weiss E, Baty D. “Therapeutic antibodies: successes, limitations and hopes for the future.” Br J Pharmacol. 2009 May;157(2): 220-33. 
  16. Weiskopf K et al. “Engineered SIRPα variants as immunotherapeutic adjuvants to anti-cancer antibodies.” Science. 2013 July 5;341(6141). 
  17. Willingham SB, et al. “The CD47-signal regulatory protein alpha (SIRPα) interaction is a therapeutic target for human solid tumors.” Proc Natl Acad Sci. 2012;109:6662. 
  18. Martinez-Torres AC, Quiney C, Attout T, et al. “CD47 agonist peptides induce programmed cell death in refractory chronic lymphocytic leukemia B cells via PLCγ1 activation: evidence from mice and humans.” PLoS Med. 2015;12(3): e1001796. 
  19. Soto-Pantoja DR, et al. “Therapeutic opportunities for targeting the ubiquitous cell surface receptor CD47.” Expert Opin Ther Targets. 2013 Jan;17(1):89-103. 
  20. Kanda S, Shono T, Tomasini-Johansson B, Klint P, Saito Y. “Role of Thrombospondin-1-Derived Peptide, 4N1K, in FGF-2-Induced Angiogenesis.” Exp Cell Res. 1999;252, 262–272. 
  21. Kalas W et al. “Thrombospondin-1 receptor mediates autophagy of RAS-expressing cancer cells and triggers tumour growth inhibition.” Anticancer Res. 2013;33(4):1429-38. 
  22. Fujimoto T.-T., Katsutani S., Shimomura T., Fujimura K. “Thrombospondin-bound integrin-associated protein (CD47) physically and functionally modifies integrin alphaIIbbeta3 by its extracellular domain.” J Biol Chem. 2013;278 26655–26665 
  23. Jeanne A, Schneider C, Martiny L, Dedieu S. “Original insights on thrombospondin-1-related antireceptor strategies in cancer.” Front Pharmacol. 2015;6: 252.